Greedy Algorithms Overview

“An algorithm that finds a solution by adding elements one by one, where each element that is added is the best current choice without regard to the future consequences of this choice.”

- Minimum Spanning Tree and Kruskal’s algorithm
- Matroids and Subset Systems
- Bipartite Matching and Intersections of Matroids
- Union-Find Data Structure
Minimum Spanning Tree and Kruskal’s Algorithm

Problem: Given an undirected, connected graph \((V, E)\) with edge weights find the min-weight subset \(E' \subset E\) such that the graph \((V, E')\) is acyclic and connected, i.e., a min-weight spanning tree (MST).

Algorithm (Kruskal)

1. *Sort edges by non-decreasing weight*
2. \(F = \emptyset\)
3. Until \(F\) is a spanning tree of \(G\)
 3.1 Get the next edge \(e\)
 3.2 If \(F + e\) is acyclic then \(F = F + e\)

The algorithm produces a tree because a) it never completes a cycle so the end result is acyclic and b) for any edge \((u, v)\) in a tree of the original graph, either \((u, v)\) is added or there is a path in \(F\) between \(u\) and \(v\).
Running Time of Kruskal’s Algorithm

Implementation: Maintain an array A with an entry for each $v \in V$ that indicates which connected component it belongs to.

- **Sorting:** $O(|E| \log |E|)$
- **Checking if acyclic:** $|E|$ checks and each is $O(1)$ time.
- **Adding e to F:** Updating array takes $O(|V|)$ time and array is updated exactly $|V| - 1$ times.

Total Running Time: $O(|E| \log |E| + |V|^2)$

Will make this $O(|E| \log |E|)$ later via the union-find data structure
Correctness of Kruskal’s Algorithm (1/2)

Let $S(F)$ be the set of spanning trees that extend a forest F.

Lemma

*If $S(F)$ contains an MST of G and e is the min-weight edge not in F and not causing a cycle in F. Then $S(F + e)$ also contains an MST for G.***

Proof.

- Let $T' \in S(F)$ be an MST that doesn't include e
- Adding e to T' makes a cycle C
- Since e doesn't make a cycle in F, there exists $e' \in C \setminus F$
- By greediness $w(e) \leq w(e')$ (note that e' doesn't form a cycle with F because $F + e' \in T'$ so the greedy algorithm could potentially add it to F)
- Then $T = T' + e - e'$ is a MST in $S(F + e)$:
 - T is a spanning tree in $S(F + e)$
 - T is a MST because $w(T) = w(T') + w(e) - w(e') \leq w(T')$

\[\square\]
Theorem
For every forest F produced by Kruskal, $S(F)$ contains a MST of G.

Proof.
- Base Case $F = \emptyset$: $S(F)$ contains all spanning trees including MST
- Induction Step: By the previous lemma, if $S(F)$ contains a MST for G, then so does $S(F + e)$

Since the final forest is actually a tree T, $S(F) = T$ is a MST.