COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 7
DISTINCT ELEMENTS RECAP

- Estimate \(\# \) distinct elements \(d \) in stream \(x_1, \ldots, x_n \in U \)
• Estimate the number of distinct elements d in stream $x_1, \ldots, x_n \in U$

• **Basic Algorithm:**
 - Let $h_1, h_2, \ldots, h_k : U \rightarrow [0, 1]$ be random hash functions.
 - Compute $s = \frac{1}{k} \sum s_i$ where $s_i = \min_{j \in [n]} h_i(x_j)$
 - Return $\hat{d} = 1/s - 1$
DISTINCT ELEMENTS RECAP

- Estimate \# distinct elements \(d \) in stream \(x_1, \ldots, x_n \in U \)

- **Basic Algorithm:**
 - Let \(h_1, h_2, \ldots, h_k : U \to [0, 1] \) be random hash functions.
 - Compute \(s = \frac{1}{k} \sum_{i} s_i \) where \(s_i = \min_{j \in [n]} h_i(x_j) \)
 - Return \(\hat{d} = 1/s - 1 \)

- **Analysis:** \(\mathbb{E}[s] = \frac{1}{d+1} \)
DISTINCT ELEMENTS RECAP

- Estimate \# distinct elements \(d \) in stream \(x_1, \ldots, x_n \in U \)

Basic Algorithm:
- Let \(h_1, h_2, \ldots, h_k : U \rightarrow [0, 1] \) be random hash functions.
- Compute \(s = \frac{1}{k} \sum s_i \) where \(s_i = \min_{j \in [n]} h_i(x_j) \)
- Return \(\hat{d} = 1/s - 1 \)

Analysis: \(\mathbb{E}[s] = \frac{1}{d+1} \) and \(\text{Var}[s] \leq \frac{1}{k(d+1)^2} \).
DISTINCT ELEMENTS RECAP

- Estimate \# distinct elements \(d \) in stream \(x_1, \ldots, x_n \in U \)

- **Basic Algorithm:**
 - Let \(h_1, h_2, \ldots, h_k : U \rightarrow [0, 1] \) be random hash functions.
 - Compute \(s = \frac{1}{k} \sum s_i \) where \(s_i = \min_{j \in [n]} h_i(x_j) \)
 - Return \(\hat{d} = 1/s - 1 \)

- **Analysis:** \(\mathbb{E}[s] = \frac{1}{d+1} \) and \(\text{Var}[s] \leq \frac{1}{k(d+1)^2} \). Setting \(k = O(\epsilon^{-2}) \) ensures \((1 - \epsilon)\mathbb{E}[s] \leq s \leq (1 + \epsilon)\mathbb{E}[s]\)
• Estimate \# distinct elements \(d\) in stream \(x_1, \ldots, x_n \in U\)

• **Basic Algorithm:**
 - Let \(h_1, h_2, \ldots, h_k : U \rightarrow [0, 1]\) be random hash functions.
 - Compute \(s = \frac{1}{k} \sum s_i\) where \(s_i = \min_{j \in [n]} h_i(x_j)\)
 - Return \(\hat{d} = 1/s - 1\)

• **Analysis:** \(\mathbb{E}[s] = \frac{1}{d+1}\) and \(\text{Var}[s] \leq \frac{1}{k(d+1)^2}\). Setting \(k = O(\epsilon^{-2})\) ensures \((1 - \epsilon)\mathbb{E}[s] \leq s \leq (1 + \epsilon)\mathbb{E}[s]\) with probability at least \(3/4\) and

\[
(1 - \epsilon)\mathbb{E}[s] \leq s \leq (1 + \epsilon)\mathbb{E}[s] \Rightarrow (1 - 4\epsilon)d \leq \hat{d} \leq (1 + 4\epsilon)d
\]
• Estimate \# distinct elements \(d\) in stream \(x_1, \ldots, x_n \in U\)

• Basic Algorithm:

 • Let \(h_1, h_2, \ldots, h_k : U \rightarrow [0, 1]\) be random hash functions.

 • Compute \(s = \frac{1}{k} \sum s_i\) where \(s_i = \min_{j \in [n]} h_i(x_j)\)

 • Return \(\hat{d} = \frac{1}{s} - 1\)

• Analysis: \(\mathbb{E}[s] = \frac{1}{d+1}\) and \(\text{Var}[s] \leq \frac{1}{k(d+1)^2}\). Setting \(k = O(\epsilon^{-2})\) ensures \((1 - \epsilon)\mathbb{E}[s] \leq s \leq (1 + \epsilon)\mathbb{E}[s]\) with probability at least \(3/4\) and

\[
(1 - \epsilon)\mathbb{E}[s] \leq s \leq (1 + \epsilon)\mathbb{E}[s] \Rightarrow (1 - 4\epsilon)d \leq \hat{d} \leq (1 + 4\epsilon)d
\]

• Median Trick: If an algorithm returns a sufficiently accurate numerical answer with probability at least \(3/4\), run it \(O(\log(1/\delta))\) times and take the median answer. This will have the required accuracy with probability at least \(1 - \delta\).
Questions on distinct elements counting?
Jaccard Index: A similarity measure between two sets.

\[J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{\text{# shared elements}}{\text{# total elements}}. \]

Natural measure for similarity between bit strings – interpret an \(n \) bit string as a set, containing the elements corresponding the positions of its ones. \(J(x, y) = \frac{\text{# shared ones}}{\text{total ones}} \).
\[J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{\# \text{ shared elements}}{\# \text{ total elements}}. \]

Want Fast Implementations For:
SEARCH WITH JACCARD SIMILARITY

\[J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{\# \text{ shared elements}}{\# \text{ total elements}}. \]

Want Fast Implementations For:

- **Near Neighbor Search**: Have a database of \(n \) sets/bit strings and given a set \(A \), want to find if it has high Jaccard similarity to anything in the database. \(\Omega(n) \) time with a linear scan.
SEARCH WITH JACCARD SIMILARITY

\[J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{\text{# shared elements}}{\text{# total elements}}. \]

Want Fast Implementations For:

- **Near Neighbor Search**: Have a database of \(n \) sets/bit strings and given a set \(A \), want to find if it has high Jaccard similarity to anything in the database. \(\Omega(n) \) time with a linear scan.

- **All-pairs Similarity Search**: Have \(n \) different sets/bit strings and want to find all pairs with high Jaccard similarity. \(\Omega(n^2) \) time if we check all pairs explicitly.

Will speed up via randomized locality sensitive hashing.
Document Similarity:

- E.g., detecting plagiarism, copyright infringement, spam.
- Use Shingling + Jaccard similarity.

The quick brown fox jumped high.

\[\{ \text{the quick brown fox} \} \]
\[\{ \text{brown fox jumped} \} \]
\[\{ \text{fox jumped high} \} \]
Document Similarity:

- E.g., detecting plagiarism, copyright infringement, spam.
- Use Shingling + Jaccard similarity. \((n\text{-}grams, k\text{-mers})\)
Online recommendation systems are often based on **collaborative filtering**. Simplest approach: find similar users and make recommendations based on those users.
Online recommendation systems are often based on **collaborative filtering**. Simplest approach: find similar users and make recommendations based on those users.

- **Twitter**: represent a user as the set of accounts they follow. Match similar users based on the Jaccard similarity of these sets. Recommend that you follow accounts followed by similar users. **Netflix**: look at sets of movies watched. **Amazon**: look at products purchased, etc.
Entity Resolution Problem: Want to combine records from multiple data sources that refer to the same entities.
Entity Resolution Problem: Want to combine records from multiple data sources that refer to the same entities.

- E.g. data on individuals from voting registrations, property records, and social media accounts. Names and addresses may not exactly match, due to typos, nicknames, moves, etc.
- Still want to match records that all refer to the same person using all pairs similarity search.
Entity Resolution Problem: Want to combine records from multiple data sources that refer to the same entities.

• E.g. data on individuals from voting registrations, property records, and social media accounts. Names and addresses may not exactly match, due to typos, nicknames, moves, etc.

• Still want to match records that all refer to the same person using all pairs similarity search.

See Section 3.8.2 of Mining Massive Datasets for a discussion of a real world example involving 1 million customers. Naively this would be $\binom{1000000}{2} \approx 500$ billion pairs of customers to check!
Many applications to spam/fraud detection. E.g.

- **Fake Reviews**: Very common on websites like Amazon. Detection often looks for (near) duplicate reviews on similar products, which have been copied. 'Near duplicate' measured with shingles + Jaccard similarity.

- **Lateral phishing**: Phishing emails sent to addresses at a business coming from a legitimate email address at the same business that has been compromised.

 One method of detection looks at the recipient list of an email and checks if it has small Jaccard similarity with any previous recipient lists. If not, the email is flagged as possible spam.
Many applications to spam/fraud detection. E.g.

- **Fake Reviews**: Very common on websites like Amazon. Detection often looks for (near) duplicate reviews on similar products, which have been copied. ‘Near duplicate’ measured with shingles + Jaccard similarity.
Many applications to spam/fraud detection. E.g.

- **Fake Reviews**: Very common on websites like Amazon. Detection often looks for (near) duplicate reviews on similar products, which have been copied. ‘Near duplicate’ measured with shingles + Jaccard similarity.

- **Lateral phishing**: Phishing emails sent to addresses at a business coming from a legitimate email address at the same business that has been compromised.

 • One method of detection looks at the recipient list of an email and checks if it has small Jaccard similarity with any previous recipient lists. If not, the email is flagged as possible spam.
Goal: Speed up Jaccard similarity search.
Goal: Speed up Jaccard similarity search.

Strategy: Use random hashing to map each set to a very compressed representation. Jaccard similarity can be estimated from these.
Goal: Speed up Jaccard similarity search.

Strategy: Use random hashing to map each set to a very compressed representation. Jaccard similarity can be estimated from these.

MinHash(A): [Andrei Broder, 1997 at Altavista]

- Let $h : U \rightarrow [0, 1]$ be a random hash function
- $s := 1$
- For $x_1, \ldots, x_{|A|} \in A$
 - $s := \min(s, h(x_k))$
- Return s
Goal: Speed up Jaccard similarity search.

Strategy: Use random hashing to map each set to a very compressed representation. Jaccard similarity can be estimated from these.

MinHash(A): [Andrei Broder, 1997 at Altavista]

- Let $h: U \rightarrow [0, 1]$ be a random hash function
- $s := 1$
- For $x_1, \ldots, x_{|A|} \in A$
 - $s := \min(s, h(x_k))$
- Return s
Goal: Speed up Jaccard similarity search.

Strategy: Use random hashing to map each set to a very compressed representation. Jaccard similarity can be estimated from these.

MinHash(A): [Andrei Broder, 1997 at Altavista]

- Let \(h : U \rightarrow [0, 1] \) be a random hash function
- \(s := 1 \)
- For \(x_1, \ldots, x_{|A|} \in A \)
 - \(s := \min(s, h(x_k)) \)
- Return \(s \)

Identical to our distinct elements sketch!
For two sets A and B, what is $\Pr(MinHash(A) = MinHash(B))$?
For two sets A and B, what is $\Pr(\text{MinHash}(A) = \text{MinHash}(B))$?

- Since we are hashing into the continuous range $[0, 1]$, we will never have $h(x) = h(y)$ for $x \neq y$ (i.e., no spurious collisions)
For two sets A and B, what is $\Pr(\text{MinHash}(A) = \text{MinHash}(B))$?

- Since we are hashing into the continuous range $[0, 1]$, we will never have $h(x) = h(y)$ for $x \neq y$ (i.e., no spurious collisions)

- $\text{MH}(A) = \text{MH}(B)$ iff an item in $A \cap B$ has the minimum hash value in both sets.
For two sets A and B, what is $\Pr(\text{MinHash}(A) = \text{MinHash}(B))$?

- Since we are hashing into the continuous range $[0, 1]$, we will never have $h(x) = h(y)$ for $x \neq y$ (i.e., no spurious collisions).

- $\text{MH}(A) = \text{MH}(B)$ iff an item in $A \cap B$ has the minimum hash value in both sets. Therefore,
For two sets A and B, what is $\Pr(\text{MinHash}(A) = \text{MinHash}(B))$?

- Since we are hashing into the continuous range $[0, 1]$, we will never have $h(x) = h(y)$ for $x \neq y$ (i.e., no spurious collisions)

- $\text{MH}(A) = \text{MH}(B)$ iff an item in $A \cap B$ has the minimum hash value in both sets. Therefore,

$$
\Pr(\text{MH}(A) = \text{MH}(B)) = \sum_{x \in A \cap B} \Pr(\text{MH}(A) = h(x) \cap \text{MH}(B) = h(x))$$

$$= \sum_{x \in A \cap B} \Pr(x = \arg \min_{y \in A \cup B} h(y))$$
For two sets A and B, what is $\Pr(MinHash(A) = MinHash(B))$?

- Since we are hashing into the continuous range $[0, 1]$, we will never have $h(x) = h(y)$ for $x \neq y$ (i.e., no spurious collisions)

\[\Pr(MH(A) = MH(B)) = \sum_{x \in A \cap B} \Pr(MH(A) = h(x) \cap MH(B) = h(x)) \]

\[= \sum_{x \in A \cap B} \Pr(x = \arg \min_{y \in A \cup B} h(y)) \]

\[= \sum_{x \in A \cap B} \frac{1}{|A \cup B|} \]

- $MH(A) = MH(B)$ iff an item in $A \cap B$ has the minimum hash value in both sets. Therefore,
For two sets A and B, what is $\Pr(\text{MinHash}(A) = \text{MinHash}(B))$?

- Since we are hashing into the continuous range $[0, 1]$, we will never have $h(x) = h(y)$ for $x \neq y$ (i.e., no spurious collisions)

- $\text{MH}(A) = \text{MH}(B)$ iff an item in $A \cap B$ has the minimum hash value in both sets. Therefore,

$$\Pr(\text{MH}(A) = \text{MH}(B)) = \sum_{x \in A \cap B} \Pr(\text{MH}(A) = h(x) \cap \text{MH}(B) = h(x))$$

$$= \sum_{x \in A \cap B} \Pr(x = \arg \min_{y \in A \cup B} h(y))$$

$$= \sum_{x \in A \cap B} \frac{1}{|A \cup B|} = \frac{|A \cap B|}{|A \cup B|} = J(A, B)$$
Upshot: MinHash reduces estimating the Jaccard similarity to checking equality of a *single number*.

\[\Pr(\text{MinHash}(A) = \text{MinHash}(B)) = J(A, B). \]
Upshot: MinHash reduces estimating the Jaccard similarity to checking equality of a *single number*.

\[
\Pr(\text{MinHash}(A) = \text{MinHash}(B)) = J(A, B).
\]

- An instance of *locality sensitive hashing* (LSH).
Upshot: MinHash reduces estimating the Jaccard similarity to checking equality of a *single number*.

\[Pr(\text{MinHash}(A) = \text{MinHash}(B)) = J(A, B). \]

- An instance of **locality sensitive hashing** (LSH).
- A hash function where the collision probability is higher when two inputs are more similar (can design different functions for different similarity metrics.)
Upshot: MinHash reduces estimating the Jaccard similarity to checking equality of a *single number*.

\[
\Pr(\text{MinHash}(A) = \text{MinHash}(B)) = J(A, B).
\]

- An instance of *locality sensitive hashing* (LSH).
- A hash function where the collision probability is higher when two inputs are more similar (can design different functions for different similarity metrics.)
Upshot: MinHash reduces estimating the Jaccard similarity to checking equality of a *single number*.

\[
\Pr(\text{MinHash}(A) = \text{MinHash}(B)) = J(A, B).
\]

- An instance of **locality sensitive hashing** (LSH).
- A hash function where the collision probability is higher when two inputs are more similar (can design different functions for different similarity metrics.)
How does locality sensitive hashing help for similarity search?

- **Near Neighbor Search**: Given an item \(x \), compute \(h(x) \). Only search for similar items in the \(h(x) \) bucket of the hash table.
- **All-pairs Similarity Search**: Scan through all buckets of the hash table and look for similar pairs within each bucket.
How does locality sensitive hashing help for similarity search?

- **Near Neighbor Search:** Given item x, compute $h(x)$. Only search for similar items in the $h(x)$ bucket of the hash table.
How does locality sensitive hashing help for similarity search?

- **Near Neighbor Search**: Given item x, compute $h(x)$. Only search for similar items in the $h(x)$ bucket of the hash table.

- **All-pairs Similarity Search**: Scan through all buckets of the hash table and look for similar pairs within each bucket.
Goal: Given a document y, identify all documents x in a database with Jaccard similarity (of their shingle sets) $J(x, y) \geq 1/2$.
Goal: Given a document y, identify all documents x in a database with Jaccard similarity (of their shingle sets) $J(x, y) \geq 1/2$.

Our Approach:
Goal: Given a document y, identify all documents x in a database with Jaccard similarity (of their shingle sets) $J(x, y) \geq 1/2$.

Our Approach:

- Create a hash table of size m, choose a random hash function $g : [0, 1] \rightarrow [m]$, and insert each item x into bucket $g(MH(x))$. Search for items similar to y in bucket $g(MH(y))$.

What is $Pr[g(MH(z)) = g(MH(y))]$ assuming $J(z, y) \leq 1/3$ and g is collision free?

At most $1/3$

For each document x in your database with $J(x, y) \geq 1/2$ what is the probability you will find x in bucket $g(MH(y))$?

At least $1/2$
Goal: Given a document y, identify all documents x in a database with Jaccard similarity (of their shingle sets) $J(x, y) \geq 1/2$.

Our Approach:

- Create a hash table of size m, choose a random hash function $g : [0, 1] \rightarrow [m]$, and insert each item x into bucket $g(MH(x))$. Search for items similar to y in bucket $g(MH(y))$.
- What is $Pr[g(MH(z)) = g(MH(y))]$ assuming $J(z, y) \leq 1/3$ and g is collision free?
Goal: Given a document y, identify all documents x in a database with Jaccard similarity (of their shingle sets) $J(x, y) \geq 1/2$.

Our Approach:

- Create a hash table of size m, choose a random hash function $g : [0, 1] \to [m]$, and insert each item x into bucket $g(MH(x))$. Search for items similar to y in bucket $g(MH(y))$.
- What is $\Pr [g(MH(z)) = g(MH(y))]$ assuming $J(z, y) \leq 1/3$ and g is collision free? At most $1/3$
Goal: Given a document y, identify all documents x in a database with Jaccard similarity (of their shingle sets) $J(x, y) \geq 1/2$.

Our Approach:

- Create a hash table of size m, choose a random hash function $g : [0, 1] \rightarrow [m]$, and insert each item x into bucket $g(MH(x))$. Search for items similar to y in bucket $g(MH(y))$.

- What is $\Pr[g(MH(z)) = g(MH(y))]$ assuming $J(z, y) \leq 1/3$ and g is collision free? At most $1/3$

- For each document x in your database with $J(x, y) \geq 1/2$ what is the probability you will find x in bucket $g(MH(y))$?
Goal: Given a document y, identify all documents x in a database with Jaccard similarity (of their shingle sets) $J(x, y) \geq 1/2$.

Our Approach:

- Create a hash table of size m, choose a random hash function $g : [0, 1] \rightarrow [m]$, and insert each item x into bucket $g(MH(x))$. Search for items similar to y in bucket $g(MH(y))$.
- What is $\Pr[g(MH(z)) = g(MH(y))]$ assuming $J(z, y) \leq 1/3$ and g is collision free? At most $1/3$.
- For each document x in your database with $J(x, y) \geq 1/2$ what is the probability you will find x in bucket $g(MH(y))$? At least $1/2$.
With a simple use of MinHash, we miss a match \(x \) with \(J(x, y) = 1/2 \) with probability 1/2. **How can we reduce this false negative rate?**
REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match x with $J(x, y) = 1/2$ with probability $1/2$. How can we reduce this false negative rate?

Repetition: Run MinHash t times independently, to produce hash values $MH_1(x), \ldots, MH_t(x)$. Apply random hash function g to map all these values to locations in t hash tables.
REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match \(x \) with \(J(x, y) = 1/2 \) with probability \(1/2 \). **How can we reduce this false negative rate?**

Repetition: Run MinHash \(t \) times independently, to produce hash values \(MH_1(x), \ldots, MH_t(x) \). Apply random hash function \(g \) to map all these values to locations in \(t \) hash tables.

- To search for items similar to \(y \), look at all items in bucket \(g(MH_1(y)) \) of the 1\(^{st}\) table, bucket \(g(MH_2(y)) \) of the 2\(^{nd}\) table, etc.
With a simple use of MinHash, we miss a match x with $J(x, y) = 1/2$ with probability 1/2. How can we reduce this false negative rate?

Repetition: Run MinHash t times independently, to produce hash values $MH_1(x), \ldots, MH_t(x)$. Apply random hash function g to map all these values to locations in t hash tables.

- To search for items similar to y, look at all items in bucket $g(MH_1(y))$ of the 1st table, bucket $g(MH_2(y))$ of the 2nd table, etc.
- What is the probability that x with $J(x, y) = 1/2$ is in at least one of these buckets, assuming for simplicity g has no collisions?
With a simple use of MinHash, we miss a match \(x \) with \(J(x, y) = 1/2 \) with probability 1/2. How can we reduce this false negative rate?

Repetition: Run MinHash \(t \) times independently, to produce hash values \(MH_1(x), \ldots, MH_t(x) \). Apply random hash function \(g \) to map all these values to locations in \(t \) hash tables.

- To search for items similar to \(y \), look at all items in bucket \(g(MH_1(y)) \) of the 1\(^{st} \) table, bucket \(g(MH_2(y)) \) of the 2\(^{nd} \) table, etc.

- What is the probability that \(x \) with \(J(x, y) = 1/2 \) is in at least one of these buckets, assuming for simplicity \(g \) has no collisions?

\[
1 - (\text{probability in no buckets})
\triangleq 1 - \left(1 - \frac{1}{2}
ight)^t
\approx 0.99 \text{ for } t = 7.
\]
REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match \(x \) with \(J(x, y) = 1/2 \) with probability \(1/2 \). How can we reduce this false negative rate?

Repetition: Run MinHash \(t \) times independently, to produce hash values \(MH_1(x), \ldots, MH_t(x) \). Apply random hash function \(g \) to map all these values to locations in \(t \) hash tables.

- To search for items similar to \(y \), look at all items in bucket \(g(MH_1(y)) \) of the 1\(^{st} \) table, bucket \(g(MH_2(y)) \) of the 2\(^{nd} \) table, etc.

- What is the probability that \(x \) with \(J(x, y) = 1/2 \) is in at least one of these buckets, assuming for simplicity \(g \) has no collisions?
 \[
 1 - \text{(probability in no buckets)} = 1 - \left(\frac{1}{2}\right)^t
 \]
Reducing False Negatives

With a simple use of MinHash, we miss a match \(x \) with \(J(x, y) = 1/2 \) with probability 1/2. **How can we reduce this false negative rate?**

Repetition: Run MinHash \(t \) times independently, to produce hash values \(MH_1(x), \ldots, MH_t(x) \). Apply random hash function \(g \) to map all these values to locations in \(t \) hash tables.

- To search for items similar to \(y \), look at all items in bucket \(g(MH_1(y)) \) of the 1\(^{st} \) table, bucket \(g(MH_2(y)) \) of the 2\(^{nd} \) table, etc.

- **What is the probability that** \(x \) with \(J(x, y) = 1/2 \) is in at least one of these buckets, assuming for simplicity \(g \) has no collisions?

 \[
 1 - \left(\text{probability in no buckets} \right) = 1 - \left(\frac{1}{2} \right)^t \approx .99 \text{ for } t = 7.
 \]
With a simple use of MinHash, we miss a match \(x \) with \(J(x, y) = 1/2 \) with probability 1/2. How can we reduce this false negative rate?

Repetition: Run MinHash \(t \) times independently, to produce hash values \(MH_1(x), \ldots, MH_t(x) \). Apply random hash function \(g \) to map all these values to locations in \(t \) hash tables.

- To search for items similar to \(y \), look at all items in bucket \(g(MH_1(y)) \) of the 1\(^{st}\) table, bucket \(g(MH_2(y)) \) of the 2\(^{nd}\) table, etc.

- What is the probability that \(x \) with \(J(x, y) = 1/2 \) is in at least one of these buckets, assuming for simplicity \(g \) has no collisions?
 \[
 1 - (\text{probability in no buckets}) = 1 - \left(\frac{1}{2}\right)^t \approx .99 \text{ for } t = 7.
 \]

- What is the probability that \(x \) with \(J(x, y) = 1/4 \) is in at least one of these buckets, assuming for simplicity \(g \) has no collisions?
REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match \(x \) with \(J(x, y) = 1/2 \) with probability 1/2. How can we reduce this false negative rate?

Repetition: Run MinHash \(t \) times independently, to produce hash values \(MH_1(x), \ldots, MH_t(x) \). Apply random hash function \(g \) to map all these values to locations in \(t \) hash tables.

- To search for items similar to \(y \), look at all items in bucket \(g(MH_1(y)) \) of the 1\(^{st} \) table, bucket \(g(MH_2(y)) \) of the 2\(^{nd} \) table, etc.

- What is the probability that \(x \) with \(J(x, y) = 1/2 \) is in at least one of these buckets, assuming for simplicity \(g \) has no collisions?
 \[1 - \text{(probability in no buckets)} = 1 - \left(\frac{1}{2} \right)^t \approx .99 \text{ for } t = 7. \]

- What is the probability that \(x \) with \(J(x, y) = 1/4 \) is in at least one of these buckets, assuming for simplicity \(g \) has no collisions?
 \[1 - \text{(probability in no buckets)} = 1 - \left(\frac{3}{4} \right)^t \]
REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match \(x \) with \(J(x, y) = 1/2 \) with probability 1/2. How can we reduce this false negative rate?

Repetition: Run MinHash \(t \) times independently, to produce hash values \(MH_1(x), \ldots, MH_t(x) \). Apply random hash function \(g \) to map all these values to locations in \(t \) hash tables.

- To search for items similar to \(y \), look at all items in bucket \(g(MH_1(y)) \) of the 1\(^{st} \) table, bucket \(g(MH_2(y)) \) of the 2\(^{nd} \) table, etc.

- What is the probability that \(x \) with \(J(x, y) = 1/2 \) is in at least one of these buckets, assuming for simplicity \(g \) has no collisions?
 \[
 1 - \left(\text{probability in no buckets} \right) = 1 - \left(\frac{1}{2} \right)^t \approx .99 \text{ for } t = 7.
 \]

- What is the probability that \(x \) with \(J(x, y) = 1/4 \) is in at least one of these buckets, assuming for simplicity \(g \) has no collisions?
 \[
 1 - \left(\text{probability in no buckets} \right) = 1 - \left(\frac{3}{4} \right)^t \approx .87 \text{ for } t = 7.
 \]
With a simple use of MinHash, we miss a match \(x \) with \(J(x, y) = 1/2 \) with probability \(1/2 \). How can we reduce this false negative rate?

Repetition: Run MinHash \(t \) times independently, to produce hash values \(MH_1(x), \ldots, MH_t(x) \). Apply random hash function \(g \) to map all these values to locations in \(t \) hash tables.

- To search for items similar to \(y \), look at all items in bucket \(g(MH_1(y)) \) of the 1\(^{st} \) table, bucket \(g(MH_2(y)) \) of the 2\(^{nd} \) table, etc.

- What is the probability that \(x \) with \(J(x, y) = 1/2 \) is in at least one of these buckets, assuming for simplicity \(g \) has no collisions?
 \[
 1 - (\text{probability in \(n \)o buckets}) = 1 - \left(\frac{1}{2} \right)^t \approx .99 \text{ for } t = 7.
 \]

- What is the probability that \(x \) with \(J(x, y) = 1/4 \) is in at least one of these buckets, assuming for simplicity \(g \) has no collisions?
 \[
 1 - (\text{probability in \(n \)o buckets}) = 1 - \left(\frac{3}{4} \right)^t \approx .87 \text{ for } t = 7.
 \]

Potential for a lot of false positives! Slows down search time.
We want to balance a small probability of false negatives (a high hit rate) with a small probability of false positives (a small query time.)
We want to balance a small probability of false negatives (a high hit rate) with a small probability of false positives (a small query time.)

Create t hash tables. Each is indexed into not with a single MinHash value, but with r values, appended together. A length r signature.
Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity $J(x, y) = s$:

1. Probability that a single hash matches.
 \[\Pr[MH_{i, j}(x) = MH_{i, j}(y)] = J(x, y) = s. \]
2. Probability that x and y having matching signatures in repetition i.
 \[\Pr[MH_{i, 1}(x), \ldots, MH_{i, r}(x) = MH_{i, 1}(y), \ldots, MH_{i, r}(y)] = s^r. \]
3. Probability that x and y don't match in repetition i:
 \[1 - s^r. \]
4. Probability that x and y don't match in all repetitions:
 \[(1 - s^r)^t. \]
5. Probability that x and y match in at least one repetition:
 \[\text{Hit Probability: } 1 - (1 - s^r)^t. \]
Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity $J(x, y) = s$:

- Probability that a single hash matches.
 \[
 \Pr [MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s.
 \]
Consider searching for matches in \(t \) hash tables, using MinHash signatures of length \(r \). For \(x \) and \(y \) with Jaccard similarity \(J(x, y) = s \):

- Probability that a single hash matches.
 \[\Pr [MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s. \]

- Probability that \(x \) and \(y \) having matching signatures in repetition \(i \).
 \[\Pr [MH_{i,1}(x), \ldots, MH_{i,r}(x) = MH_{i,1}(y), \ldots, MH_{i,r}(y)] . \]
Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity $J(x, y) = s$:

- Probability that a single hash matches.
 \[\Pr[MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s. \]

- Probability that x and y having matching signatures in repetition i.
 \[\Pr[MH_{i,1}(x), \ldots, MH_{i,r}(x) = MH_{i,1}(y), \ldots, MH_{i,r}(y)] = s^r. \]
Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity $J(x, y) = s$:

- Probability that a single hash matches.
 \[\Pr [MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s. \]

- Probability that x and y having matching signatures in repetition i.
 \[\Pr [MH_{i,1}(x), \ldots, MH_{i,r}(x) = MH_{i,1}(y), \ldots, MH_{i,r}(y)] = s^r. \]

- Probability that x and y don’t match in repetition i:
Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity $J(x, y) = s$:

- Probability that a single hash matches.
 $\Pr[MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s$.

- Probability that x and y having matching signatures in repetition i.
 $\Pr[MH_{i,1}(x), \ldots, MH_{i,r}(x) = MH_{i,1}(y), \ldots, MH_{i,r}(y)] = s^r$.

- Probability that x and y don’t match in repetition i: $1 - s^r$.
Balancing Hit Rate and Query Time

Consider searching for matches in \(t \) hash tables, using MinHash signatures of length \(r \). For \(x \) and \(y \) with Jaccard similarity \(J(x, y) = s \):

- Probability that a single hash matches.
 \[\Pr [MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s. \]

- Probability that \(x \) and \(y \) having matching signatures in repetition \(i \).
 \[\Pr [MH_{i,1}(x), \ldots, MH_{i,r}(x) = MH_{i,1}(y), \ldots, MH_{i,r}(y)] = s^r. \]

- Probability that \(x \) and \(y \) don’t match in repetition \(i \): \(1 - s^r \).

- Probability that \(x \) and \(y \) don’t match in all repetitions:
Consider searching for matches in \(t \) hash tables, using MinHash signatures of length \(r \). For \(x \) and \(y \) with Jaccard similarity \(J(x, y) = s \):

- Probability that a single hash matches.
 \[
 \Pr [MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s.
 \]

- Probability that \(x \) and \(y \) having matching signatures in repetition \(i \).
 \[
 \Pr [MH_{i,1}(x), \ldots, MH_{i,r}(x) = MH_{i,1}(y), \ldots, MH_{i,r}(y)] = s^r.
 \]

- Probability that \(x \) and \(y \) don’t match in repetition \(i \): \(1 - s^r \).

- Probability that \(x \) and \(y \) don’t match in all repetitions: \((1 - s^r)^t \).
Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity $J(x, y) = s$:

- Probability that a single hash matches.
 $$\Pr [MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s.$$

- Probability that x and y having matching signatures in repetition i.
 $$\Pr [MH_{i,1}(x), \ldots, MH_{i,r}(x) = MH_{i,1}(y), \ldots, MH_{i,r}(y)] = s^r.$$

- Probability that x and y don’t match in repetition i: $1 - s^r$.

- Probability that x and y don’t match in all repetitions: $(1 - s^r)^t$.

- Probability that x and y match in at least one repetition:
Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity $J(x, y) = s$:

- Probability that a single hash matches.
 \[\Pr [MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s. \]

- Probability that x and y having matching signatures in repetition i.
 \[\Pr [MH_{i,1}(x), \ldots, MH_{i,r}(x) = MH_{i,1}(y), \ldots, MH_{i,r}(y)] = s^r. \]

- Probability that x and y don’t match in repetition i: $1 - s^r$.

- Probability that x and y don’t match in all repetitions: $(1 - s^r)^t$.

- Probability that x and y match in at least one repetition:

 Hit Probability: $1 - (1 - s^r)^t$.

Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity $J(x, y) = s$ match in at least one repetition is: $1 - (1 - s^r)^t$.

$\text{THE } s\text{-CURVE}$
Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity $J(x, y) = s$ match in at least one repetition is: $1 - (1 - s^r)^t$.
Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity $J(x, y) = s$ match in at least one repetition is: $1 - (1 - s^r)^t$.

\[r = 10, \quad t = 10 \]
Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity $J(x, y) = s$ match in at least one repetition is: $1 - (1 - s^r)^t$.

\[
 r = 5, \ t = 30
\]
Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity $J(x, y) = s$ match in at least one repetition is: $1 - (1 - s^r)^t$.

r and t are tuned depending on application. ‘Threshold’ when hit probability is $1/2$ is $\approx (1/t)^{1/r}$. E.g., $\approx (1/30)^{1/5} = .51$ in this case.
For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with $J(x, y) \geq .9$.

- There are 10 true matches in the database with $J(x, y) \geq .9$.
- There are 10,000 near matches with $J(x, y) \in [.7, .9]$.

With signature length $r = 25$ and repetitions $t = 50$, hit probability for $J(x, y) = s$ is $1 - (1 - s)^{25/50}$.

- Hit probability for $J(x, y) \geq .9$ is $\geq 1 - (1 - .9)^{25/50} \approx .98$.
- Hit probability for $J(x, y) \in [.7, .9]$ is $\leq 1 - (1 - .7)^{25/50} \approx .98$.
- Hit probability for $J(x, y) \leq .7$ is $\leq 1 - (1 - .7)^{25/50} \approx .007$.

Expected Number of Items Scanned: (proportional to query time) $\leq 10 + .98 \times 10,000 + .007 \times 9,990 \approx 80,000 \ll 100,000$.

19
For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with $J(x, y) \geq .9$.

- There are 10 **true matches** in the database with $J(x, y) \geq .9$.
- There are 10,000 **near matches** with $J(x, y) \in [.7, .9]$.
S-CURVE EXAMPLE

For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with $J(x, y) \geq .9$.

- There are 10 true matches in the database with $J(x, y) \geq .9$.
- There are 10,000 near matches with $J(x, y) \in [.7, .9]$.

With signature length $r = 25$ and repetitions $t = 50$, hit probability for $J(x, y) = s$ is $1 - (1 - s^{25})^{50}$.
For example: Consider a database with 10,000,000 audio clips. You are given a clip \(x \) and want to find any \(y \) in the database with \(J(x, y) \geq .9 \).

- There are 10 true matches in the database with \(J(x, y) \geq .9 \).
- There are 10,000 near matches with \(J(x, y) \in [.7, .9] \).

With signature length \(r = 25 \) and repetitions \(t = 50 \), hit probability for \(J(x, y) = s \) is \(1 - (1 - s^{25})^{50} \).

- Hit probability for \(J(x, y) \geq .9 \) is \(\geq 1 - (1 - .9^{25})^{50} \approx .98 \)
- Hit probability for \(J(x, y) \in [.7, .9] \) is \(\leq 1 - (1 - .9^{25})^{50} \approx .98 \)
- Hit probability for \(J(x, y) \leq .7 \) is \(\leq 1 - (1 - .7^{25})^{50} \approx .007 \)
For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with $J(x, y) \geq .9$.

- There are 10 true matches in the database with $J(x, y) \geq .9$.
- There are 10,000 near matches with $J(x, y) \in [.7, .9]$.

With signature length $r = 25$ and repetitions $t = 50$, hit probability for $J(x, y) = s$ is $1 - (1 - s^{25})^{50}$.

- Hit probability for $J(x, y) \geq .9$ is $\geq 1 - (1 - .9^{25})^{50} \approx .98$
- Hit probability for $J(x, y) \in [.7, .9]$ is $\leq 1 - (1 - .9^{25})^{50} \approx .98$
- Hit probability for $J(x, y) \leq .7$ is $\leq 1 - (1 - .7^{25})^{50} \approx .007$

Expected Number of Items Scanned: (proportional to query time)

$$\leq 10 + .98 \times 10,000 + .007 \times 9,989,990 \approx 80,000$$
For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with $J(x, y) \geq .9$.

- There are 10 **true matches** in the database with $J(x, y) \geq .9$.
- There are 10,000 **near matches** with $J(x, y) \in [.7, .9]$.

With signature length $r = 25$ and repetitions $t = 50$, hit probability for $J(x, y) = s$ is $1 - (1 - s^{25})^{50}$.

- Hit probability for $J(x, y) \geq .9$ is $\geq 1 - (1 - .9^{25})^{50} \approx .98$
- Hit probability for $J(x, y) \in [.7, .9]$ is $\leq 1 - (1 - .9^{25})^{50} \approx .98$
- Hit probability for $J(x, y) \leq .7$ is $\leq 1 - (1 - .7^{25})^{50} \approx .007$

Expected Number of Items Scanned: (proportional to query time)

$$\leq 10 + .98 \times 10,000 + .007 \times 9,989,990 \approx 80,000 \ll 10,000,000.$$