COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 4
Last Class:

- 2-Level Hashing Analysis (linearity of expectation and Markov’s inequality)
- 2-universal and pairwise independent hash functions
- Chebyshev: \(\Pr(|X - \mathbb{E}[X]| \geq t) \leq \frac{\text{Var}[X]}{t^2} \)
LAST TIME

Last Class:

• 2-Level Hashing Analysis (linearity of expectation and Markov’s inequality)
• 2-universal and pairwise independent hash functions
• Chebyshev: \(\Pr(|X - \mathbb{E}[X]| \geq t) \leq \frac{\text{Var}[X]}{t^2} \)

This Time:

• Random hashing for load balancing. Motivating:
 • Stronger concentration inequalities: Chebyshev’s inequality, exponential tail bounds, and their connections to the law of large numbers.
 • The union bound.
Suppose random variable X and can be written as

$$X = A_1 + A_2 + \ldots + A_n$$

where each A_i are independent indicator variables with $\Pr(A_i) = p$.

Note $\mathbb{E}[A_i] = p$ and $\text{Var}[A_i] = \mathbb{E}[A_i^2] - \mathbb{E}[A_i]^2 = p - p^2$.

By linearity of expectation and variance, $\mathbb{E}[X] = np$ and $\text{Var}[X] = np(1-p)$.
• Suppose random variable X and can be written as

$$X = A_1 + A_2 + \ldots + A_n$$

where each A_i are independent indicator variables with $\Pr(A_i) = p$.
• Then, the distribution of X is the **Binomial Distribution** and

$$\Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}$$
• Suppose random variable X and can be written as

$$X = A_1 + A_2 + \ldots + A_n$$

where each A_i are independent indicator variables with $\Pr(A_i) = p$.

• Then, the distribution of X is the Binomial Distribution and

$$\Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}$$

• Note $\mathbb{E}[A_i] = p$ and $\text{Var}[A_i] = \mathbb{E}[A_i^2] - \mathbb{E}[A_i]^2 = p - p^2$.
BINOMIAL DISTRIBUTION

• Suppose random variable X and can be written as

$$X = A_1 + A_2 + \ldots + A_n$$

where each A_i are independent indicator variables with $Pr(A_i) = p$.

• Then, the distribution of X is the Binomial Distribution and

$$Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}$$

• By linearity of expectation and variance,

$$E[X] = np \quad \text{Var}[X] = np(1 - p)$$
Randomized Load Balancing:

- n requests randomly assigned to k servers.

Mathematical Details:

Let R_i be the number of requests assigned to the ith server. R_i is binomial and has an expectation:

$$E[R_i] = n \sum_{j=1}^{k} Pr[j \text{ assigned to } i] = \frac{n}{k}.$$

The variance is:

$$\text{Var}[R_i] = \text{Var}[n \sum_{j=1}^{k} I[\text{request } j \text{ assigned to } i]] = n \sum_{j=1}^{k} \text{Var}[I[j \text{ assigned to } i]] = \frac{n}{k} \left(1 - \frac{1}{k^2}\right).$$
Randomized Load Balancing:

- n requests randomly assigned to k servers.
- Let R_i be the number requests assigned to the ith server.
Randomized Load Balancing:

- There are n requests randomly assigned to k servers.
- Let R_i be the number of requests assigned to the ith server.
- R_i is binomial and hence has expectation:

$$E[R_i] = \sum_{j=1}^{n} E[\mathbb{I}_{\text{request } j \text{ assigned to } i}] = \sum_{j=1}^{n} \Pr[j \text{ assigned to } i] = \frac{n}{k}.$$
Randomized Load Balancing:

- n requests randomly assigned to k servers.
- Let R_i be the number requests assigned to the ith server.
- R_i is binomial and hence has expectation:

$$E[R_i] = \sum_{j=1}^{n} E[I_{\text{request } j \text{ assigned to } i}] = \sum_{j=1}^{n} Pr[j \text{ assigned to } i] = \frac{n}{k}.$$

- Variance:

$$\text{Var}[R_i] = \text{Var}\left[\sum_{j=1}^{n} I_{\text{request } j \text{ assigned to } i}\right] = \sum_{j=1}^{n} \text{Var}[I_j \text{ assigned to } i] = n \left(\frac{1}{k} - \frac{1}{k^2}\right).$$
What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}[R_i] = \frac{2n}{k}$. I.e., some server is overloaded if each has $\frac{2n}{k}$ capacity?
What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}[R_i] = \frac{2n}{k}$. I.e., some server is overloaded if each has $\frac{2n}{k}$ capacity?

- By Markov’s inequality, $\Pr[R_i \geq 2\mathbb{E}[R_i]] \leq 1/2$.
What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}[R_i] = \frac{2n}{k}$. I.e., some server is overloaded if each has $\frac{2n}{k}$ capacity?

- By Markov’s inequality, $\Pr[R_i \geq 2\mathbb{E}[R_i]] \leq 1/2$.
- By Chebyshev’s inequality, $\Pr[R_i \geq 2\mathbb{E}[R_i]] \leq \frac{\text{Var}[R_i]}{\mathbb{E}[R_i]^2} < \frac{k}{n}$.
What is the probability that the maximum server load exceeds \(2 \cdot \mathbb{E}[R_i] = \frac{2n}{k} \). I.e., some server is overloaded if each has \(\frac{2n}{k} \) capacity?

- By Markov’s inequality, \(\Pr[R_i \geq 2\mathbb{E}[R_i]] \leq 1/2 \).
- By Chebyshev’s inequality, \(\Pr[R_i \geq 2\mathbb{E}[R_i]] \leq \frac{\text{Var}[R_i]}{\mathbb{E}[R_i]^2} \leq \frac{k}{n} \).

We want to upper bound:

\[
\Pr \left(\max_i (R_i) \geq \frac{2n}{k} \right) = \Pr \left(\left[R_1 \geq \frac{2n}{k} \right] \text{ or } \ldots \text{ or } \left[R_k \geq \frac{2n}{k} \right] \right) = \Pr \left(\bigcup_{i=1}^{k} \left[R_i \geq \frac{2n}{k} \right] \right)
\]
What is the probability that the maximum server load exceeds $2 \cdot E[R_i] = \frac{2n}{k}$. I.e., some server is overloaded if each has $\frac{2n}{k}$ capacity?

- By Markov’s inequality, $Pr[R_i \geq 2E[R_i]] \leq 1/2$.
- By Chebyshev’s inequality, $Pr[R_i \geq 2E[R_i]] \leq \frac{\text{Var}[R_i]}{E[R_i]^2} < \frac{k}{n}$.

We want to upper bound:

$$Pr\left(\max_i (R_i) \geq \frac{2n}{k}\right) = Pr\left(\left[R_1 \geq \frac{2n}{k} \right] \text{ or } \ldots \text{ or } \left[R_k \geq \frac{2n}{k} \right]\right)$$

$$= Pr\left(\bigcup_{i=1}^{k} \left[R_i \geq \frac{2n}{k} \right]\right)$$

How do we do this since R_1, \ldots, R_k are not independent?
THE UNION BOUND

Union Bound: For any random events $A_1, A_2, ..., A_k$,

$$\Pr(A_1 \cup A_2 \cup \ldots \cup A_k) \leq \Pr(A_1) + \Pr(A_2) + \ldots + \Pr(A_k).$$
Union Bound: For any random events A_1, A_2, \ldots, A_k,

$$\Pr (A_1 \cup A_2 \cup \ldots \cup A_k) \leq \Pr (A_1) + \Pr (A_2) + \ldots + \Pr (A_k).$$
Union Bound: For any random events $A_1, A_2, ..., A_k$,

$$\Pr(A_1 \cup A_2 \cup \ldots \cup A_k) \leq \Pr(A_1) + \Pr(A_2) + \ldots + \Pr(A_k).$$

When is the union bound tight?

When $A_1, A_2, ..., A_k$ are all disjoint.
Union Bound: For any random events $A_1, A_2, ..., A_k$,

$$
\Pr(A_1 \cup A_2 \cup \ldots \cup A_k) \leq \Pr(A_1) + \Pr(A_2) + \ldots + \Pr(A_k).
$$

When is the union bound tight? When $A_1, ..., A_k$ are all disjoint.
Union Bound: For any random events $A_1, A_2, ..., A_k$,

$$\Pr(A_1 \cup A_2 \cup \ldots \cup A_k) \leq \Pr(A_1) + \Pr(A_2) + \ldots + \Pr(A_k).$$

When is the union bound tight? When $A_1, ..., A_k$ are all disjoint.
Union Bound: For any random events $A_1, A_2, ..., A_k$,
\[
Pr (A_1 \cup A_2 \cup \ldots \cup A_k) \leq Pr(A_1) + Pr(A_2) + \ldots + Pr(A_k).
\]

When is the union bound tight? When $A_1, ..., A_k$ are all disjoint.

On the first problem set, you will prove the union bound, as a consequence of Markov’s inequality.
APPLYING THE UNION BOUND

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}[R_i] = \frac{2n}{k}$. I.e., that some server is overloaded if we give each $\frac{2n}{k}$ capacity?

$$\Pr \left(\max_i (R_i) \geq \frac{2n}{k} \right) = \Pr \left(\bigcup_{i=1}^{k} \left[R_i \geq \frac{2n}{k} \right] \right)$$

n: total number of requests, k: number of servers randomly assigned requests, R_i: number of requests assigned to server i. $\mathbb{E}[R_i] = \frac{n}{k}$. $\text{Var}[R_i] = \frac{n}{k}$.
Applying the Union Bound

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}[R_i] = \frac{2n}{k}$. I.e., that some server is overloaded if we give each $\frac{2n}{k}$ capacity?

$$
\Pr \left(\max_i (R_i) \geq \frac{2n}{k} \right) = \Pr \left(\bigcup_{i=1}^k \left[R_i \geq \frac{2n}{k} \right] \right)
\leq \sum_{i=1}^k \Pr \left(\left[R_i \geq \frac{2n}{k} \right] \right)
$$

(Union Bound)

n: total number of requests, k: number of servers randomly assigned requests, R_i: number of requests assigned to server i. $\mathbb{E}[R_i] = \frac{n}{k}$, $\text{Var}[R_i] = \frac{n}{k}$.
Applying the union bound

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}[R_i] = \frac{2n}{k}$. I.e., that some server is overloaded if we give each $\frac{2n}{k}$ capacity?

\[
\Pr \left(\max_i (R_i) \geq \frac{2n}{k} \right) = \Pr \left(\bigcup_{i=1}^{k} \left[R_i \geq \frac{2n}{k} \right] \right)
\leq \sum_{i=1}^{k} \Pr \left(\left[R_i \geq \frac{2n}{k} \right] \right)
\leq \sum_{i=1}^{k} \frac{k}{n}
\]

(Union Bound)

(Bound from Chebyshev’s)

n: total number of requests, k: number of servers randomly assigned requests, R_i: number of requests assigned to server i. $\mathbb{E}[R_i] = \frac{n}{k}$. $\text{Var}[R_i] = \frac{n}{k}$.
What is the probability that the maximum server load exceeds \(2 \cdot \mathbb{E}[R_i] = \frac{2n}{k}\). I.e., that some server is overloaded if we give each \(\frac{2n}{k}\) capacity?

\[
\Pr \left(\max_i \left(R_i \right) \geq \frac{2n}{k} \right) = \Pr \left(\bigcup_{i=1}^{k} \left(R_i \geq \frac{2n}{k} \right) \right)
\]

\[
\leq \sum_{i=1}^{k} \Pr \left(R_i \geq \frac{2n}{k} \right) \quad \text{(Union Bound)}
\]

\[
\leq \sum_{i=1}^{k} \frac{k}{n} = \frac{k^2}{n} \quad \text{(Bound from Chebyshev’s)}
\]

\(n\): total number of requests, \(k\): number of servers randomly assigned requests, \(R_i\): number of requests assigned to server \(i\). \(\mathbb{E}[R_i] = \frac{n}{k}\). \(\text{Var}[R_i] = \frac{n}{k}\).
What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}[R_i] = \frac{2n}{k}$.

I.e., that some server is overloaded if we give each $\frac{2n}{k}$ capacity?

\[
\Pr \left(\max_i (R_i) \geq \frac{2n}{k} \right) = \Pr \left(\bigcup_{i=1}^{k} \left[R_i \geq \frac{2n}{k} \right] \right)
\leq \sum_{i=1}^{k} \Pr \left(\left[R_i \geq \frac{2n}{k} \right] \right) \quad \text{(Union Bound)}
\leq \sum_{i=1}^{k} \frac{k}{n} = \frac{k^2}{n} \quad \text{(Bound from Chebyshev’s)}
\]

As long as $k \ll \sqrt{n}$, the maximum server load will be small (compared to the expected load) with good probability.

\[n: \text{total number of requests, } k: \text{number of servers randomly assigned requests, } R_i: \text{number of requests assigned to server } i. \ \mathbb{E}[R_i] = \frac{n}{k}. \ \text{Var}[R_i] = \frac{n}{k}.\]
Pr(|X − E[X]| ≥ t) ≤ \frac{\text{Var}[X]}{t^2}

\textbf{X}: any random variable, \(t, s \): any fixed numbers.
Pr(|X - \mathbb{E}[X]| \geq t) \leq \frac{\text{Var}[X]}{t^2}

What is the probability that \(X \) falls \(s \) standard deviations from it's mean?

\(X \): any random variable, \(t, s \): any fixed numbers.
Pr(|X − E[X]| ≥ t) ≤ \frac{\text{Var}[X]}{t^2}

What is the probability that X falls s standard deviations from it’s mean?

Pr(|X − E[X]| ≥ s \cdot \sqrt{\text{Var}[X]}) \leq \frac{\text{Var}[X]}{s^2 \cdot \text{Var}[X]} = \frac{1}{s^2}.

X: any random variable, t, s: any fixed numbers.
Pr($|X - \mathbb{E}[X]| \geq t$) $\leq \frac{\text{Var}[X]}{t^2}$

What is the probability that X falls s standard deviations from its mean?

Pr($|X - \mathbb{E}[X]| \geq s \cdot \sqrt{\text{Var}[X]}$) $\leq \frac{\text{Var}[X]}{s^2 \cdot \text{Var}[X]} = \frac{1}{s^2}$.

Why is this so powerful?

X: any random variable, t, s: any fixed numbers.
Consider drawing independent identically distributed (i.i.d.) random variables X_1, \ldots, X_n with mean μ and variance σ^2.
Consider drawing independent identically distributed (i.i.d.) random variables X_1, \ldots, X_n with mean μ and variance σ^2.

How well does the sample average $S = \frac{1}{n} \sum_{i=1}^{n} X_i$ approximate the true mean μ?

By Chebyshev's Inequality:

For any fixed value $\epsilon > 0$,

$$\Pr\left(|S - \mu| \geq \epsilon \right) \leq \frac{\text{Var}[S]}{\epsilon^2} = \frac{\sigma^2}{n \epsilon^2}.$$
Consider drawing independent identically distributed (i.i.d.) random variables \(X_1, \ldots, X_n \) with mean \(\mu \) and variance \(\sigma^2 \).

How well does the sample average \(S = \frac{1}{n} \sum_{i=1}^{n} X_i \) approximate the true mean \(\mu \)?

\[
\text{Var}[S] = \text{Var}\left[\frac{1}{n} \sum_{i=1}^{n} X_i \right]
\]

By Chebyshev's Inequality:

for any fixed value \(\epsilon > 0 \),

\[
\Pr(|S - \mu| \geq \epsilon) \leq \frac{\text{Var}[S]}{\epsilon^2} = \frac{\sigma^2}{n \epsilon^2}.
\]

Law of Large Numbers:

With enough samples \(n \), the sample average will always concentrate to the mean \(\mu \).

• Cannot show from vanilla Markov's inequality.
Consider drawing independent identically distributed (i.i.d.) random variables X_1, \ldots, X_n with mean μ and variance σ^2.

How well does the sample average $S = \frac{1}{n} \sum_{i=1}^{n} X_i$ approximate the true mean μ?

$$\text{Var}[S] = \text{Var} \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}[X_i]$$
Consider drawing independent identically distributed (i.i.d.) random variables X_1, \ldots, X_n with mean μ and variance σ^2.

How well does the sample average $S = \frac{1}{n} \sum_{i=1}^{n} X_i$ approximate the true mean μ?

$$
\text{Var}[S] = \text{Var}\left[\frac{1}{n} \sum_{i=1}^{n} X_i\right] = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}[X_i] = \frac{1}{n^2} \cdot n \cdot \sigma^2
$$
Consider drawing independent identically distributed (i.i.d.) random variables X_1, \ldots, X_n with mean μ and variance σ^2.

How well does the sample average $S = \frac{1}{n} \sum_{i=1}^{n} X_i$ approximate the true mean μ?

$$\text{Var}[S] = \text{Var} \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}[X_i] = \frac{1}{n^2} \cdot n \cdot \sigma^2 = \frac{\sigma^2}{n}.$$
Consider drawing independent identically distributed (i.i.d.) random variables X_1, \ldots, X_n with mean μ and variance σ^2.

How well does the sample average $S = \frac{1}{n} \sum_{i=1}^{n} X_i$ approximate the true mean μ?

$$\text{Var}[S] = \text{Var} \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}[X_i] = \frac{1}{n^2} \cdot n \cdot \sigma^2 = \frac{\sigma^2}{n}. $$

By Chebyshev’s Inequality: for any fixed value $\epsilon > 0$,

$$\Pr(|S - \mathbb{E}[S]| \geq \epsilon) \leq \frac{\text{Var}[S]}{\epsilon^2} = \frac{\sigma^2}{n \epsilon^2}. $$
Consider drawing independent identically distributed (i.i.d.) random variables \(X_1, \ldots, X_n \) with mean \(\mu \) and variance \(\sigma^2 \).

How well does the sample average \(S = \frac{1}{n} \sum_{i=1}^{n} X_i \) approximate the true mean \(\mu \)?

\[
\text{Var}[S] = \text{Var} \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var} [X_i] = \frac{1}{n^2} \cdot n \cdot \sigma^2 = \frac{\sigma^2}{n}.
\]

By Chebyshev’s Inequality: for any fixed value \(\epsilon > 0 \),

\[
\Pr(\{|S - \mu| \geq \epsilon\}) \leq \frac{\text{Var}[S]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}.
\]
Consider drawing independent identically distributed (i.i.d.) random variables X_1, \ldots, X_n with mean μ and variance σ^2.

How well does the sample average $S = \frac{1}{n} \sum_{i=1}^{n} X_i$ approximate the true mean μ?

$$\text{Var}[S] = \text{Var} \left[\frac{1}{n} \sum_{i=1}^{n} X_i \right] = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}[X_i] = \frac{1}{n^2} \cdot n \cdot \sigma^2 = \frac{\sigma^2}{n}.$$

By Chebyshev’s Inequality: for any fixed value $\epsilon > 0$,

$$\Pr(\left| S - \mu \right| \geq \epsilon) \leq \frac{\text{Var}[S]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}.$$

Law of Large Numbers: with enough samples n, the sample average will always concentrate to the mean.
Consider drawing independent identically distributed (i.i.d.) random variables X_1, \ldots, X_n with mean μ and variance σ^2.

How well does the sample average $S = \frac{1}{n} \sum_{i=1}^{n} X_i$ approximate the true mean μ?

$$\text{Var}[S] = \text{Var}\left[\frac{1}{n} \sum_{i=1}^{n} X_i\right] = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}[X_i] = \frac{1}{n^2} \cdot n \cdot \sigma^2 = \frac{\sigma^2}{n}.$$

By Chebyshev’s Inequality: for any fixed value $\epsilon > 0$,

$$\Pr(|S - \mu| \geq \epsilon) \leq \frac{\text{Var}[S]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}.$$

Law of Large Numbers: with enough samples n, the sample average will always concentrate to the mean.

- Cannot show from vanilla Markov’s inequality.
The number of servers must be small compared to the number of requests \((k = O(\sqrt{n}))\) for the maximum load to be bounded in comparison to the expected load with good probability.

\(n\): total number of requests, \(k\): number of servers randomly assigned requests.
The number of servers must be small compared to the number of requests ($k = O(\sqrt{n})$) for the maximum load to be bounded in comparison to the expected load with good probability.

- There are many requests routed to a relatively small number of servers so the load seen on each server is close to what is expected via law of large numbers.

n: total number of requests, k: number of servers randomly assigned requests.
Questions on union bound, Chebyshev’s inequality, random hashing?
We flip $n = 100$ independent coins, each are heads with probability $1/2$ and tails with probability $1/2$. Let H be the number of heads.
We flip \(n = 100 \) independent coins, each are heads with probability \(\frac{1}{2} \) and tails with probability \(\frac{1}{2} \). Let \(H \) be the number of heads.

\[
\mathbb{E}[H] = \frac{n}{2} = 50 \quad \text{and} \quad \text{Var}[H] =
\]
We flip $n = 100$ independent coins, each are heads with probability $1/2$ and tails with probability $1/2$. Let H be the number of heads.

$$\mathbb{E}[H] = \frac{n}{2} = 50 \text{ and } \text{Var}[H] = \frac{n}{4} = 25$$
We flip $n = 100$ independent coins, each are heads with probability $1/2$ and tails with probability $1/2$. Let H be the number of heads.

$$\mathbb{E}[H] = \frac{n}{2} = 50 \text{ and } \text{Var}[H] = \frac{n}{4} = 25$$

<table>
<thead>
<tr>
<th>Markov’s:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Pr(H \geq 60) \leq 0.833$</td>
</tr>
<tr>
<td>$\Pr(H \geq 70) \leq 0.714$</td>
</tr>
<tr>
<td>$\Pr(H \geq 80) \leq 0.625$</td>
</tr>
</tbody>
</table>
We flip \(n = 100 \) independent coins, each are heads with probability 1/2 and tails with probability 1/2. Let \(H \) be the number of heads.

\[
\mathbb{E}[H] = \frac{n}{2} = 50 \quad \text{and} \quad \text{Var}[H] = \frac{n}{4} = 25 \rightarrow s.d. = 5
\]

Markov’s:

- \(\Pr(H \geq 60) \leq .833 \)
- \(\Pr(H \geq 70) \leq .714 \)
- \(\Pr(H \geq 80) \leq .625 \)

Chebyshev’s:

- \(\Pr(H \geq 60) \leq .25 \)
- \(\Pr(H \geq 70) \leq .0625 \)
- \(\Pr(H \geq 80) \leq .0278 \)
We flip $n = 100$ independent coins, each are heads with probability $1/2$ and tails with probability $1/2$. Let H be the number of heads.

$$E[H] = \frac{n}{2} = 50 \text{ and } \text{Var}[H] = \frac{n}{4} = 25 \rightarrow \text{s.d.} = 5$$

<table>
<thead>
<tr>
<th>Markov’s:</th>
<th>Chebyshev’s:</th>
<th>In Reality:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Pr(H \geq 60) \leq .833$</td>
<td>$\Pr(H \geq 60) \leq .25$</td>
<td>$\Pr(H \geq 60) = 0.0284$</td>
</tr>
<tr>
<td>$\Pr(H \geq 70) \leq .714$</td>
<td>$\Pr(H \geq 70) \leq .0625$</td>
<td>$\Pr(H \geq 70) = .000039$</td>
</tr>
<tr>
<td>$\Pr(H \geq 80) \leq .625$</td>
<td>$\Pr(H \geq 80) \leq .0278$</td>
<td>$\Pr(H \geq 80) < 10^{-9}$</td>
</tr>
</tbody>
</table>

H has a simple Binomial distribution, so can compute these probabilities exactly.
To be fair... Markov and Chebyshev’s inequalities apply much more generally than to Binomial random variables like coin flips.
To be fair... Markov and Chebyshev's inequalities apply much more generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very general distributions?
To be fair... Markov and Chebyshev’s inequalities apply much more generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very general distributions?

• Markov’s: \(\Pr(X \geq t) \leq \frac{\mathbb{E}[X]}{t} \). First Moment.
To be fair... Markov and Chebyshev’s inequalities apply much more generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very general distributions?

- **Markov’s**: \(\Pr(X \geq t) \leq \frac{\mathbb{E}[X]}{t} \). First Moment.
- **Chebyshev’s**: \(\Pr(|X - \mathbb{E}[X]| \geq t) = \Pr(|X - \mathbb{E}[X]|^2 \geq t^2) \leq \frac{\text{Var}[X]}{t^2} \). Second Moment.
To be fair... Markov and Chebyshev’s inequalities apply much more generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very general distributions?

• Markov’s: \(\Pr(X \geq t) \leq \frac{\mathbb{E}[X]}{t} \). First Moment.

• Chebyshev’s: \(\Pr(|X - \mathbb{E}[X]| \geq t) = \Pr(|X - \mathbb{E}[X]|^2 \geq t^2) \leq \frac{\text{Var}[X]}{t^2} \). Second Moment.

• What if we just apply Markov’s inequality to even higher moments?
Consider any random variable X:

$$\Pr(|X - \mathbb{E}[X]| \geq t) = \Pr\left((X - \mathbb{E}[X])^4 \geq t^4\right)$$
Consider any random variable X:

$$\Pr(|X - \mathbb{E}[X]| \geq t) = \Pr\left((X - \mathbb{E}[X])^4 \geq t^4\right) \leq \frac{\mathbb{E}\left[(X - \mathbb{E}[X])^4\right]}{t^4}.$$
A FOURTH MOMENT BOUND

Consider any random variable \(X \):

\[
\Pr(|X - \mathbb{E}[X]| \geq t) = \Pr\left((X - \mathbb{E}[X])^4 \geq t^4\right) \leq \frac{\mathbb{E}\left[(X - \mathbb{E}[X])^4\right]}{t^4}.
\]
Consider any random variable X:

$$\Pr(|X - \mathbb{E}[X]| \geq t) = \Pr \left((X - \mathbb{E}[X])^4 \geq t^4 \right) \leq \frac{\mathbb{E} \left[(X - \mathbb{E}[X])^4 \right]}{t^4}.$$

Application to Coin Flips: Recall: $n = 100$ independent fair coins, H is the number of heads.

- Bound the fourth moment:

$$
\sum_{i, j, k, \ell} c_{ijk\ell} \mathbb{E}[H_i H_j H_k H_\ell] = 1862.5
$$

where $H_i = 1$ if coin flip i is heads and 0 otherwise. Then apply some messy calculations...
Consider any random variable X:

$$\Pr(|X - \mathbb{E}[X]| \geq t) = \Pr\left((X - \mathbb{E}[X])^4 \geq t^4\right) \leq \frac{\mathbb{E}\left[(X - \mathbb{E}[X])^4\right]}{t^4}.$$

Application to Coin Flips: Recall: $n = 100$ independent fair coins, H is the number of heads.

- Bound the fourth moment:

$$\mathbb{E}\left[(H - \mathbb{E}[H])^4\right] = \mathbb{E}\left[\left(\sum_{i=1}^{100} H_i - 50\right)^4\right]$$

where $H_i = 1$ if coin flip i is heads and 0 otherwise.
Consider any random variable X:

$$\Pr(|X - \mathbb{E}[X]| \geq t) = \Pr \left((X - \mathbb{E}[X])^4 \geq t^4 \right) \leq \frac{\mathbb{E} \left[(X - \mathbb{E}[X])^4 \right]}{t^4}. $$

Application to Coin Flips: Recall: $n = 100$ independent fair coins, H is the number of heads.

- Bound the fourth moment:

$$\mathbb{E} \left[(H - \mathbb{E}[H])^4 \right] = \mathbb{E} \left[\left(\sum_{i=1}^{100} H_i - 50 \right)^4 \right] = \sum_{i,j,k,\ell} c_{ijk\ell} \mathbb{E}[H_i H_j H_k H_\ell]$$

where $H_i = 1$ if coin flip i is heads and 0 otherwise. Then apply some messy calculations...
Consider any random variable X:

$$\Pr(|X - \mathbb{E}[X]| \geq t) = \Pr((X - \mathbb{E}[X])^4 \geq t^4) \leq \frac{\mathbb{E}[(X - \mathbb{E}[X])^4]}{t^4}.$$

Application to Coin Flips: Recall: $n = 100$ independent fair coins, H is the number of heads.

- Bound the fourth moment:

$$\mathbb{E}[(H - \mathbb{E}[H])^4] = \mathbb{E}\left[\left(\sum_{i=1}^{100} H_i - 50\right)^4\right] = \sum_{i,j,k,\ell} c_{ijk\ell} \mathbb{E}[H_i H_j H_k H_\ell] = 1862.5$$

where $H_i = 1$ if coin flip i is heads and 0 otherwise. Then apply some messy calculations...
Consider any random variable X:

$$
\Pr(|X - \mathbb{E}[X]| \geq t) = \Pr\left((X - \mathbb{E}[X])^4 \geq t^4\right) \leq \frac{\mathbb{E}\left[(X - \mathbb{E}[X])^4\right]}{t^4}.
$$

Application to Coin Flips: Recall: $n = 100$ independent fair coins, H is the number of heads.

- Bound the fourth moment:

$$
\mathbb{E}\left[(H - \mathbb{E}[H])^4\right] = \mathbb{E}\left[\left(\sum_{i=1}^{100} H_i - 50\right)^4\right] = \sum_{i,j,k,\ell} c_{ijk\ell} \mathbb{E}[H_i H_j H_k H_\ell] = 1862.5
$$

where $H_i = 1$ if coin flip i is heads and 0 otherwise. Then apply some messy calculations...

- Apply Fourth Moment Bound:

$$
\Pr\left(|H - \mathbb{E}[H]| \geq t\right) \leq \frac{1862.5}{t^4}.
$$
Tighter Bounds

<table>
<thead>
<tr>
<th>Chebyshev’s:</th>
<th>In Reality:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Pr(H \geq 60) \leq .25)</td>
<td>(\Pr(H \geq 60) = 0.0284)</td>
</tr>
<tr>
<td>(\Pr(H \geq 70) \leq .0625)</td>
<td>(\Pr(H \geq 70) = .000039)</td>
</tr>
<tr>
<td>(\Pr(H \geq 80) \leq .04)</td>
<td>(\Pr(H \geq 80) < 10^{-9})</td>
</tr>
</tbody>
</table>
Tighter Bounds

<table>
<thead>
<tr>
<th>Chebyshev’s:</th>
<th>4^{th} Moment:</th>
<th>In Reality:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Pr(H \geq 60) \leq 0.25$</td>
<td>$\Pr(H \geq 60) \leq 0.186$</td>
<td>$\Pr(H \geq 60) = 0.0284$</td>
</tr>
<tr>
<td>$\Pr(H \geq 70) \leq 0.0625$</td>
<td>$\Pr(H \geq 70) \leq 0.0116$</td>
<td>$\Pr(H \geq 70) = 0.000039$</td>
</tr>
<tr>
<td>$\Pr(H \geq 80) \leq 0.04$</td>
<td>$\Pr(H \geq 80) \leq 0.0023$</td>
<td>$\Pr(H \geq 80) < 10^{-9}$</td>
</tr>
<tr>
<td>Chebyshev’s:</td>
<td>4<sup>th</sup> Moment:</td>
<td>In Reality:</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>(\Pr(H \geq 60) \leq .25)</td>
<td>(\Pr(H \geq 60) \leq .186)</td>
<td>(\Pr(H \geq 60) = 0.0284)</td>
</tr>
<tr>
<td>(\Pr(H \geq 70) \leq .0625)</td>
<td>(\Pr(H \geq 70) \leq .0116)</td>
<td>(\Pr(H \geq 70) = .000039)</td>
</tr>
<tr>
<td>(\Pr(H \geq 80) \leq .04)</td>
<td>(\Pr(H \geq 80) \leq .0023)</td>
<td>(\Pr(H \geq 80) < 10^{-9})</td>
</tr>
<tr>
<td>Chebyshev’s:</td>
<td>4th Moment:</td>
<td>In Reality:</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Pr(H ≥ 60) ≤ .25</td>
<td>Pr(H ≥ 60) ≤ .186</td>
<td>Pr(H ≥ 60) = 0.0284</td>
</tr>
<tr>
<td>Pr(H ≥ 70) ≤ .0625</td>
<td>Pr(H ≥ 70) ≤ .0116</td>
<td>Pr(H ≥ 70) = .000039</td>
</tr>
<tr>
<td>Pr(H ≥ 80) ≤ .04</td>
<td>Pr(H ≥ 80) ≤ .0023</td>
<td>Pr(H ≥ 80) < 10^{-9}</td>
</tr>
</tbody>
</table>
Tighter Bounds

<table>
<thead>
<tr>
<th>Chebyshev’s:</th>
<th>4th Moment:</th>
<th>In Reality:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Pr(H \geq 60) \leq .25$</td>
<td>$\Pr(H \geq 60) \leq .186$</td>
<td>$\Pr(H \geq 60) = 0.0284$</td>
</tr>
<tr>
<td>$\Pr(H \geq 70) \leq .0625$</td>
<td>$\Pr(H \geq 70) \leq .0116$</td>
<td>$\Pr(H \geq 70) = .000039$</td>
</tr>
<tr>
<td>$\Pr(H \geq 80) \leq .04$</td>
<td>$\Pr(H \geq 80) \leq .0023$</td>
<td>$\Pr(H \geq 80) < 10^{-9}$</td>
</tr>
</tbody>
</table>

- We aren’t restricted to applying Markov’s to $|X - \mathbb{E}[X]|^k$ for some k. Can apply to any monotonic function $f(|X - \mathbb{E}[X]|)$.

Tighter Bounds

<table>
<thead>
<tr>
<th>Chebyshev’s:</th>
<th>4^{th} Moment:</th>
<th>In Reality:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Pr(H \geq 60) \leq .25$</td>
<td>$\Pr(H \geq 60) \leq .186$</td>
<td>$\Pr(H \geq 60) = 0.0284$</td>
</tr>
<tr>
<td>$\Pr(H \geq 70) \leq .0625$</td>
<td>$\Pr(H \geq 70) \leq .0116$</td>
<td>$\Pr(H \geq 70) = .000039$</td>
</tr>
<tr>
<td>$\Pr(H \geq 80) \leq .04$</td>
<td>$\Pr(H \geq 80) \leq .0023$</td>
<td>$\Pr(H \geq 80) < 10^{-9}$</td>
</tr>
</tbody>
</table>

- We aren’t restricted to applying Markov’s to $|X - \mathbb{E}[X]|^k$ for some k. Can apply to any monotonic function $f(|X - \mathbb{E}[X]|)$.
- **Why monotonic?**
Tighter Bounds

<table>
<thead>
<tr>
<th>Chebyshev’s:</th>
<th>4th Moment:</th>
<th>In Reality:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr(H ≥ 60) ≤ .25</td>
<td>Pr(H ≥ 60) ≤ .186</td>
<td>Pr(H ≥ 60) = 0.0284</td>
</tr>
<tr>
<td>Pr(H ≥ 70) ≤ .0625</td>
<td>Pr(H ≥ 70) ≤ .0116</td>
<td>Pr(H ≥ 70) = .000039</td>
</tr>
<tr>
<td>Pr(H ≥ 80) ≤ .04</td>
<td>Pr(H ≥ 80) ≤ .0023</td>
<td>Pr(H ≥ 80) < 10(^{-9})</td>
</tr>
</tbody>
</table>

- We aren’t restricted to applying Markov’s to \(|X - E[X]|^k\) for some \(k\). Can apply to any monotonic function \(f(|X - E[X]|)\).
- **Why monotonic?** \(Pr(|X - E[X]| > t) = Pr(f(|X - E[X]|) > f(t))\).
• **Moment Generating Function:** Consider for any \(r > 0 \):

\[
M_r(X) = e^{r \cdot (X - \mathbb{E}[X])} = \sum_{k=0}^{\infty} \frac{r^k (X - \mathbb{E}[X])^k}{k!}
\]

and note \(M_r(X) \) is monotonic for any \(r > 0 \)
• **Moment Generating Function:** Consider for any $r > 0$:

$$M_r(X) = e^{r \cdot (X - \mathbb{E}[X])} = \sum_{k=0}^{\infty} \frac{r^k (X - \mathbb{E}[X])^k}{k!}$$

and note $M_r(X)$ is monotonic for any $r > 0$ and so

$$\Pr[|X - \mathbb{E}[X]| \geq \lambda] = \Pr[M_r(X) \geq e^{r \lambda}] \leq \frac{\mathbb{E}[M_r(X)]}{e^{r \lambda}}$$
• **Moment Generating Function:** Consider for any $r > 0$:

$$M_r(X) = e^{r(X - \mathbb{E}[X])} = \sum_{k=0}^{\infty} \frac{r^k(X - \mathbb{E}[X])^k}{k!}$$

and note $M_r(X)$ is monotonic for any $r > 0$ and so

$$\Pr[|X - \mathbb{E}[X]| \geq \lambda] = \Pr[M_r(X) \geq e^{r\lambda}] \leq \frac{\mathbb{E}[M_r(X)]}{e^{r\lambda}}$$

• Weighted sum of all moments (r controls the weights) and choosing r appropriately lets one prove a number of very powerful exponential concentration bounds such as Chernoff, Bernstein, Hoeffding, Azuma, Berry-Esseen, etc.
Bernstein Inequality: Consider independent random variables $X_1, \ldots, X_n \in [-M, M]$. Let $\mu = \mathbb{E}[\sum_{i=1}^{n} X_i]$ and $\sigma^2 = \text{Var}[\sum_{i=1}^{n} X_i]$. For any $t \geq 0$:

$$
\Pr\left(\left|\sum_{i=1}^{n} X_i - \mu\right| \geq t\right) \leq 2 \exp\left(-\frac{t^2}{2\sigma^2 + \frac{4}{3}Mt}\right).
$$
Bernstein Inequality: Consider independent random variables $X_1, \ldots, X_n \in [-M, M]$. Let $\mu = \mathbb{E}[\sum_{i=1}^{n} X_i]$ and $\sigma^2 = \text{Var}[\sum_{i=1}^{n} X_i]$. For any $t \geq 0$:

$$\Pr \left(\left| \sum_{i=1}^{n} X_i - \mu \right| \geq t \right) \leq 2 \exp \left(-\frac{t^2}{2\sigma^2 + \frac{4}{3}Mt} \right).$$

Assume that $M = 1$ and plug in $t = s \cdot \sigma$ for $s \leq \sigma$.
Bernstein Inequality: Consider independent random variables $X_1, \ldots, X_n \in [-1,1]$. Let $\mu = \mathbb{E}[\sum_{i=1}^{n} X_i]$ and $\sigma^2 = \text{Var}[\sum_{i=1}^{n} X_i]$. For any $s \geq 0$:

$$\Pr \left(\left| \sum_{i=1}^{n} X_i - \mu \right| \geq s\sigma \right) \leq 2 \exp \left(-\frac{s^2}{4} \right).$$

Assume that $M = 1$ and plug in $t = s \cdot \sigma$ for $s \leq \sigma$.
Bernstein Inequality: Consider independent random variables $X_1, \ldots, X_n \in [-1,1]$. Let $\mu = \mathbb{E}[\sum_{i=1}^n X_i]$ and $\sigma^2 = \text{Var}[\sum_{i=1}^n X_i]$. For any $s \geq 0$:

$$\Pr \left(\left| \sum_{i=1}^n X_i - \mu \right| \geq s \sigma \right) \leq 2 \exp \left(-\frac{s^2}{4} \right).$$

Assume that $M = 1$ and plug in $t = s \cdot \sigma$ for $s \leq \sigma$.

Compare to Chebyshev's: $\Pr \left(\left| \sum_{i=1}^n X_i - \mu \right| \geq s \sigma \right) \leq \frac{1}{s^2}$.

Bernstein Inequality: Consider independent random variables $X_1, \ldots, X_n \in [-1,1]$. Let $\mu = \mathbb{E}[\sum_{i=1}^{n} X_i]$ and $\sigma^2 = \text{Var}[\sum_{i=1}^{n} X_i]$. For any $s \geq 0$:

$$
\Pr \left(\left| \sum_{i=1}^{n} X_i - \mu \right| \geq s \sigma \right) \leq 2 \exp \left(-\frac{s^2}{4} \right).
$$

Assume that $M = 1$ and plug in $t = s \cdot \sigma$ for $s \leq \sigma$.

Compare to Chebyshev’s: $\Pr \left(\left| \sum_{i=1}^{n} X_i - \mu \right| \geq s \sigma \right) \leq \frac{1}{s^2}$.

• An exponentially stronger dependence on s!
Consider again bounding the number of heads H in $n = 100$ independent coin flips.

<table>
<thead>
<tr>
<th>Chebyshev:</th>
<th>Bernstein:</th>
<th>In Reality:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Pr(H \geq 60) \leq .25$</td>
<td>$\Pr(H \geq 60) \leq .0412$</td>
<td>$\Pr(H \geq 60) = .0284$</td>
</tr>
<tr>
<td>$\Pr(H \geq 70) \leq .0625$</td>
<td>$\Pr(H \geq 70) \leq .0108$</td>
<td>$\Pr(H \geq 70) = .000039$</td>
</tr>
<tr>
<td>$\Pr(H \geq 80) \leq .04$</td>
<td>$\Pr(H \geq 80) \leq 0.0000907$</td>
<td>$\Pr(H \geq 80) < 10^{-9}$</td>
</tr>
</tbody>
</table>

H: total number heads in 100 random coin flips. $\mathbb{E}[H] = 50$.
Consider again bounding the number of heads H in $n = 100$ independent coin flips.

<table>
<thead>
<tr>
<th>Chebyshev:</th>
<th>Bernstein:</th>
<th>In Reality:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Pr(H \geq 60) \leq .25$</td>
<td>$\Pr(H \geq 60) \leq .412$</td>
<td>$\Pr(H \geq 60) = 0.0284$</td>
</tr>
<tr>
<td>$\Pr(H \geq 70) \leq .0625$</td>
<td>$\Pr(H \geq 70) \leq .0108$</td>
<td>$\Pr(H \geq 70) = .000039$</td>
</tr>
<tr>
<td>$\Pr(H \geq 80) \leq .04$</td>
<td>$\Pr(H \geq 80) \leq 0.0000907$</td>
<td>$\Pr(H \geq 80) < 10^{-9}$</td>
</tr>
</tbody>
</table>

Getting much closer to the true probability.

H: total number heads in 100 random coin flips. $\mathbb{E}[H] = 50$.
Bernstein Inequality: Consider independent random variables X_1, \ldots, X_n all falling in $[-M, M]$. Let $\mu = \mathbb{E}[\sum_{i=1}^n X_i]$ and $\sigma^2 = \text{Var}[\sum_{i=1}^n X_i] = \sum_{i=1}^n \text{Var}[X_i]$. For any $t \geq 0$:

$$\Pr \left(\left| \sum_{i=1}^n X_i - \mu \right| \geq t \right) \leq 2 \exp \left(-\frac{t^2}{2\sigma^2 + \frac{4}{3}Mt} \right).$$

A useful variation for binary (indicator) random variables is:

Chernoff Bound (simplified version): Consider independent random variables X_1, \ldots, X_n taking values in $\{0, 1\}$. Let $\mu = \mathbb{E}[\sum_{i=1}^n X_i]$. For any $\delta \geq 0$

$$\Pr \left(\left| \sum_{i=1}^n X_i - \mu \right| \geq \delta \mu \right) \leq 2 \exp \left(-\frac{\delta^2 \mu}{2 + \delta} \right).$$