Last Class: Fast computation of the SVD/eigendecomposition.

• Power method for computing the top singular vector of a matrix.
• Power method is a simple iterative algorithm for solving the non-convex optimization problem \(\max_{\vec{v}: \|\vec{v}\|_2^2 = 1} |\vec{v}^T A \vec{v}| \)

Final Two Weeks of Class:

• More general iterative algorithms for optimization, specifically gradient descent and its variants.
• What are these methods, when are they applied, and how do you analyze their performance?
• Small taste of what you can find in COMPSCI 590OP or 690OP.
Discrete (Combinatorial) Optimization: (traditional CS algorithms)

- Graph Problems: min-cut, max-cut, max flow, shortest path, matchings, maximum independent set, traveling salesman problem
- Problems with discrete constraints or outputs: bin-packing, scheduling, sequence alignment, submodular maximization
- Generally searching over a finite but exponentially large set of possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

- Unconstrained convex and non-convex optimization.
- Linear programming, quadratic programming, semidefinite programming
CONTINUOUS OPTIMIZATION EXAMPLES
Given some function $f : \mathbb{R}^d \to \mathbb{R}$, find $\vec{\theta}_\star$ with:

$$f(\vec{\theta}_\star) = \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta})$$
Given some function $f : \mathbb{R}^d \rightarrow \mathbb{R}$, find $\vec{\theta}^\star$ with:

$$f(\vec{\theta}^\star) = \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon$$

Typically up to some small additive approximation term ϵ.
Given some function $f : \mathbb{R}^d \to \mathbb{R}$, find $\vec{\theta}_\star$ with:

$$f(\vec{\theta}_\star) = \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta}) + \epsilon$$

Typically up to some small additive approximation term ϵ.

Often under some constraints:

- $\|\vec{\theta}\|_2 \leq 1$, $\|\vec{\theta}\|_1 \leq 1$.
- $A\vec{\theta} \leq \vec{b}$, $\vec{\theta}^T A\vec{\theta} \geq 0$.
- $\sum_{i=1}^d \vec{\theta}(i) \leq c$.
Definition – Convex Function: A function \(f : \mathbb{R}^d \rightarrow \mathbb{R} \) is convex iff, for any \(\vec{\theta}_1, \vec{\theta}_2 \in \mathbb{R}^d \) and \(\lambda \in [0, 1] \):

\[
(1 - \lambda) \cdot f(\vec{\theta}_1) + \lambda \cdot f(\vec{\theta}_2) \geq f \left((1 - \lambda) \cdot \vec{\theta}_1 + \lambda \cdot \vec{\theta}_2 \right)
\]
Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta}_1, \vec{\theta}_2 \in S$ and $\lambda \in [0, 1]$: $(1 - \lambda)\vec{\theta}_1 + \lambda \cdot \vec{\theta}_2 \in S$
Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta}_1, \vec{\theta}_2 \in S$ and $\lambda \in [0, 1]$:

$$(1 - \lambda)\vec{\theta}_1 + \lambda \cdot \vec{\theta}_2 \in S$$

For any convex set let $P_S(\cdot)$ denote the projection function onto S:

$$P_S(\vec{y}) = \arg \min_{\vec{\theta} \in S} ||\vec{\theta} - \vec{y}||_2$$
Next few classes: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be applied to almost any continuous function we care about optimizing.
- Often not the ‘best’ choice for any given function, but it is the approach of choice in ML since it is simple, general, and often works very well.
- At each step, tries to move towards the lowest nearby point in the function that is can – in the opposite direction of the gradient.
Basic Idea of Gradient Descent

Gradient Descent Update in 1D:

- Set θ_1 arbitrarily.
- For $i = 1$ to t:
 \[\theta_{i+1} = \theta_i - \eta f'(\theta_i) \]
 i.e., increase θ if negative derivative and decrease θ if positive derivative. η is small fixed value.
- Return $\theta = \arg \min_{\theta_1, \ldots, \theta_t} f(\theta_i)$.

Example:

Let $f(x) = (x - 1)^2$, $\theta_1 = 2$, and $\eta = 0.2$.

- Compute derivative $f'(x) = 2(x - 1)$.
- $\theta_2 = \theta_1 - \eta f'(\theta_1) = 2 - 0.2 \times 2 = 1.6$.
- $\theta_3 = \theta_2 - \eta f'(\theta_2) = 1.6 - 0.2 \times 1.2 = 1.36$.

...
Gradient Descent Update in 1D:

• Set θ_1 arbitrarily.
• For $i = 1$ to t:

$$\theta_{i+1} = \theta_i - \eta f'(\theta_i)$$

i.e., increase θ if negative derivative and decrease θ if positive derivative. η is small fixed value.

• Return $\theta = \arg \min_{\theta_1, \ldots, \theta_t} f(\theta_i)$.

Example: $f(x) = (x - 1)^2$, $\theta_1 = 2$, and $\eta = 0.2$
Gradient Descent Update in 1D:

- Set θ_1 arbitrarily.
- For $i = 1$ to t:
 \[\theta_{i+1} = \theta_i - \eta f'(\theta_i) \]
 i.e., increase θ if negative derivative and decrease θ if positive derivative. η is a small fixed value.
- Return $\theta = \arg\min_{\theta_1, \ldots, \theta_t} f(\theta_i)$.

Example: $f(x) = (x - 1)^2$, $\theta_1 = 2$, and $\eta = 0.2$
- Compute derivative $f'(x) = 2(x - 1)$
Gradient Descent Update in 1D:

- Set θ_1 arbitrarily.
- For $i = 1$ to t:

$$\theta_{i+1} = \theta_i - \eta f'(\theta_i)$$

i.e., increase θ if negative derivative and decrease θ if positive derivative. η is small fixed value.
- Return $\theta = \arg \min_{\theta_1, \ldots, \theta_t} f(\theta_i)$.

Example: $f(x) = (x - 1)^2$, $\theta_1 = 2$, and $\eta = 0.2$
- Compute derivative $f'(x) = 2(x - 1)$
- $\theta_2 = \theta_1 - \eta f'(\theta_1) = 2 - 0.2 \times f'(2) = 2 - 0.2 \times 2 = 1.6$.
Gradient Descent Update in 1D:

- Set θ_1 arbitrarily.
- For $i = 1$ to t:
 \[\theta_{i+1} = \theta_i - \eta f'(\theta_i) \]
 i.e., increase θ if negative derivative and decrease θ if positive derivative. η is small fixed value.
- Return $\theta = \arg\min_{\theta_1, \ldots, \theta_t} f(\theta_i)$.

Example: $f(x) = (x - 1)^2$, $\theta_1 = 2$, and $\eta = 0.2$

- Compute derivative $f'(x) = 2(x - 1)$
- $\theta_2 = \theta_1 - \eta f'(\theta_1) = 2 - 0.2 \times f'(2) = 2 - 0.2 \times 2 = 1.6$.
- $\theta_3 = \theta_2 - \eta f'(\theta_2) = 1.6 - 0.2 \times f'(1.6) = 1.6 - 0.2 \times 1.2 = 1.36$.
Theorem: For convex function $f : \mathbb{R} \to \mathbb{R}$ where $|f'(\theta)| \leq G$ for all θ, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within R of θ_*, outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f(\theta_*) + \epsilon$.
Theorem: For convex function $f : \mathbb{R} \rightarrow \mathbb{R}$ where $|f'(\theta)| \leq G$ for all θ, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within R of θ_*, outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f(\theta_*) + \epsilon$.

- Substituting $\theta_{i+1} = \theta_i - \eta f'(\theta_i)$ and letting $a_i = \theta_i - \theta_*$ gives:

$$a_{i+1}^2 = (\theta_{i+1} - \theta_*)^2 = (a_i - \eta f'(\theta_i))^2 = a_i^2 - 2\eta f'(\theta_i)a_i + (\eta f'(\theta_i))^2$$
Theorem: For convex function $f : \mathbb{R} \rightarrow \mathbb{R}$ where $|f'(\theta)| \leq G$ for all θ, GD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G \sqrt{t}}$, and starting point within R of θ_*, outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f(\theta_*) + \epsilon$.

• Substituting $\theta_{i+1} = \theta_i - \eta f'(\theta_i)$ and letting $a_i = \theta_i - \theta_*$ gives:

$$a_{i+1}^2 = (\theta_{i+1} - \theta_*)^2 = (a_i - \eta f'(\theta_i))^2 = a_i^2 - 2\eta f'(\theta_i)a_i + (\eta f'(\theta_i))^2$$

• Rearrange and use convexity to show:

$$f(\theta_i) - f(\theta_*) \leq f'(\theta_i)a_i = \frac{1}{2\eta} (a_i^2 - a_{i+1}^2) + \eta (f'(\theta_i))^2 / 2$$
Theorem: For convex function $f : \mathbb{R} \to \mathbb{R}$ where $|f'(\theta)| \leq G$ for all θ, GD run with $t \geq \frac{R^2G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G\sqrt{t}}$, and starting point within R of θ_*, outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f(\theta_*) + \epsilon$.

- Substituting $\theta_{i+1} = \theta_i - \eta f'(\theta_i)$ and letting $a_i = \theta_i - \theta_*$ gives:
 $$a_{i+1}^2 = (\theta_{i+1} - \theta_*)^2 = (a_i - \eta f'(\theta_i))^2 = a_i^2 - 2\eta f'(\theta_i)a_i + (\eta f'(\theta_i))^2$$

- Rearrange and use convexity to show:
 $$f(\theta_i) - f(\theta_*) \leq f'(\theta_i)a_i = \frac{1}{2\eta} (a_i^2 - a_{i+1}^2) + \eta(f'(\theta_i))^2/2$$

- Summing over i and using the fact $|f'(\theta_i)| \leq G$,
 $$\frac{1}{t} \sum_{i=1}^{t} (f(\theta_i) - f(\theta_*)) \leq \left(\frac{1}{2t\eta} \sum_{i=1}^{t} (a_i^2 - a_{i+1}^2) \right) + \frac{\eta G^2}{2} \leq \frac{a_1^2}{2t\eta} + \frac{\eta G^2}{2}$$
Theorem: For convex function $f : \mathbb{R} \rightarrow \mathbb{R}$ where $|f'(\theta)| \leq G$ for all θ, GD run with $t \geq \frac{R^2 G^2}{\epsilon^2}$ iterations, $\eta = \frac{R}{G \sqrt{t}}$, and starting point within R of θ_*, outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f(\theta_*) + \epsilon$.

- Substituting $\theta_{i+1} = \theta_i - \eta f'(\theta_i)$ and letting $a_i = \theta_i - \theta_*$ gives:
 $$a_{i+1}^2 = (\theta_{i+1} - \theta_*)^2 = (a_i - \eta f'(\theta_i))^2 = a_i^2 - 2\eta f'(\theta_i) a_i + (\eta f'(\theta_i))^2$$

- Rearrange and use convexity to show:
 $$f(\theta_i) - f(\theta_*) \leq f'(\theta_i) a_i = \frac{1}{2\eta} \left(a_i^2 - a_{i+1}^2 \right) + \eta (f'(\theta_i))^2 / 2$$

- Summing over i and using the fact $|f'(\theta_i)| \leq G$,
 $$\frac{1}{t} \sum_{i=1}^{t} (f(\theta_i) - f(\theta_*)) \leq \left(\frac{1}{2t\eta} \sum_{i=1}^{t} (a_i^2 - a_{i+1}^2) \right) + \frac{\eta G^2}{2} \leq \frac{a_1^2}{2t\eta} + \frac{\eta G^2}{2}$$

- Using $a_1^2 \leq R^2$ and $f(\hat{\theta}) - f(\theta_*) \leq \frac{1}{t} \sum_{i=1}^{t} (f(\theta_i) - f(\theta_*))$
 $$f(\hat{\theta}) \leq f(\theta_*) + \frac{R^2}{2t\eta} + \frac{\eta G^2}{2} \leq f(\theta_*) + \epsilon$$

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

- Have a **model**, which is a function mapping inputs to predictions (neural network, linear function, low-degree polynomial etc).
- The model is parameterized by a **parameter vector** (weights in a neural network, coefficients in a linear function or polynomial)
- Want to **train** this model on input data, by picking a parameter vector such that the model does a good job mapping inputs to predictions on your training data.

This training step is typically formulated as a continuous optimization problem.
Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood...)
Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood . . .)

Model: $M_{\vec{\theta}} : \mathbb{R}^d \to \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \overset{\text{def}}{=} \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d)$.
Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood...)

Model: $M_{\theta} : \mathbb{R}^d \rightarrow \mathbb{R}$ with $M_{\theta}(\vec{x}) \overset{\text{def}}{=} \theta(1) \cdot x(1) + \ldots + \theta(d) \cdot x(d)$.
Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood...)

Model: $M_{\vec{\theta}} : \mathbb{R}^d \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text{def}}{=} \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d)$.

Parameter Vector: $\vec{\theta} \in \mathbb{R}^d$ (the regression coefficients)
Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood...)

Model: $M_{\vec{\theta}}: \mathbb{R}^d \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \overset{\text{def}}{=} \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d)$.

Parameter Vector: $\vec{\theta} \in \mathbb{R}^d$ (the regression coefficients)

Optimization Problem: Given data points (training points) $\vec{x}_1, \ldots, \vec{x}_n$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels $y_1, \ldots, y_n \in \mathbb{R}$, find $\vec{\theta}_*$ minimizing the loss function:

$$L(\vec{\theta}, \mathbf{X}, \vec{y}) = \sum_{i=1}^{n} \ell(\mathbf{M}_{\vec{\theta}}(\vec{x}_i), y_i)$$

where ℓ is some measurement of how far $\mathbf{M}_{\vec{\theta}}(\vec{x}_i)$ is from y_i.

Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood...)

Model: $M_{\vec{\theta}} : \mathbb{R}^d \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \overset{\text{def}}{=} \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d)$.

Parameter Vector: $\vec{\theta} \in \mathbb{R}^d$ (the regression coefficients)

Optimization Problem: Given data points (training points) $\vec{x}_1, \ldots, \vec{x}_n$ (the rows of data matrix $X \in \mathbb{R}^{n \times d}$) and labels $y_1, \ldots, y_n \in \mathbb{R}$, find $\vec{\theta}_*$ minimizing the loss function:

$$L(\vec{\theta}, X, \vec{y}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)$$

where ℓ is some measurement of how far $M_{\vec{\theta}}(\vec{x}_i)$ is from y_i.

- $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = (M_{\vec{\theta}}(\vec{x}_i) - y_i)^2$ (least squares regression)
- $y_i \in \{-1, 1\}$ and $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = \ln (1 + \exp(-y_i M_{\vec{\theta}}(\vec{x}_i)))$ (logistic regression)
Example 1: Linear Regression, e.g., predicting house prices based on \(d \) features (sq. footage, average price of houses in neighborhood . . .)

Model: \(M_\theta : \mathbb{R}^d \to \mathbb{R} \) with \(M_\theta(\vec{x}) \overset{\text{def}}{=} \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d) \).

Parameter Vector: \(\vec{\theta} \in \mathbb{R}^d \) (the regression coefficients)

Optimization Problem: Given data points (training points) \(\vec{x}_1, \ldots, \vec{x}_n \) (the rows of data matrix \(\mathbf{X} \in \mathbb{R}^{n \times d} \)) and labels \(y_1, \ldots, y_n \in \mathbb{R} \), find \(\vec{\theta}_* \) minimizing the loss function:

\[
L_{\mathbf{X}, \mathbf{y}}(\vec{\theta}) = L(\vec{\theta}, \mathbf{X}, \mathbf{y}) = \sum_{i=1}^{n} \ell(M_\theta(\vec{x}_i), y_i)
\]

where \(\ell \) is some measurement of how far \(M_\theta(\vec{x}_i) \) is from \(y_i \).

- \(\ell(M_\theta(\vec{x}_i), y_i) = (M_\theta(\vec{x}_i) - y_i)^2 \) (least squares regression)
- \(y_i \in \{-1, 1\} \) and \(\ell(M_\theta(\vec{x}_i), y_i) = \ln (1 + \exp(-y_i M_\theta(\vec{x}_i))) \) (logistic regression)
Example 2: Neural Networks

Model: $M_{\vec{\theta}} : \mathbb{R}^d \rightarrow \mathbb{R}$. $M_{\vec{\theta}}(\vec{x}) = \langle \vec{w}_{out}, \sigma(\mathbf{W}_2 \sigma(\mathbf{W}_1 \vec{x})) \rangle$.

Parameter Vector: $\vec{\theta} \in \mathbb{R}^{(# \text{ edges})}$ (the weights on every edge)

Optimization Problem: Given data points $\vec{x}_1, \ldots, \vec{x}_n$ and labels $z_1, \ldots, z_n \in \mathbb{R}$, find $\vec{\theta}_*$ minimizing the loss function:

$$L_{\vec{x}, \vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), z_i)$$
\[L_{\mathbf{x}, \mathbf{y}}(\mathbf{\theta}) = \sum_{i=1}^{n} \ell(M_{\mathbf{\theta}}(\mathbf{x}_i), y_i) \]

- **Supervised** means we have labels \(y_1, \ldots, y_n \) for the training points.
- Solving the final optimization problem has many different names: likelihood maximization, empirical risk minimization, minimizing training loss, etc.
- Continuous optimization is also very common in unsupervised learning. (PCA, spectral clustering, etc.)
- **Generalization** tries to explain why minimizing the loss \(L_{\mathbf{x}, \mathbf{y}}(\mathbf{\theta}) \) on the *training points* minimizes the loss on future *test points*. I.e., makes us have good predictions on future inputs.
Choice of optimization algorithm for minimizing \(f(\vec{\theta}) \) will depend on many things:

- The form of \(f \) (in ML, depends on the model & loss function).
- Any constraints on \(\vec{\theta} \) (e.g., \(||\vec{\theta}|| < c \)).
- Computational constraints, such as memory constraints.

\[
L_{X,y}(\vec{\theta}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(x_i), y_i)
\]