COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 18
This Class: Spectral Clustering

- Finding good cuts via Laplacian eigenvectors.
- Start analysis via the stochastic block model.
GRAPH CLUSTERING
A very common task is to **partition or cluster** vertices in a graph based on similarity/connectivity.
A very common task is to **partition or cluster** vertices in a graph based on similarity/connectivity.

Community detection in naturally occurring networks.

(a) Zachary Karate Club Graph
A very common task is to partition or cluster vertices in a graph based on similarity/connectivity.

Community detection in naturally occurring networks.
SPECTRAL CLUSTERING

A very common task is to **partition or cluster** vertices in a graph based on similarity/connectivity.

Linearly separable data.
A very common task is to **partition or cluster** vertices in a graph based on similarity/connectivity.

Non-linearly separable data k-nearest neighbor graph.
A very common task is to **partition or cluster** vertices in a graph based on similarity/connectivity.

Non-linearly separable data k-nearest neighbor graph.
A very common task is to **partition or cluster** vertices in a graph based on similarity/connectivity.

Non-linearly separable data k-nearest neighbor graph.
A very common task is to **partition or cluster** vertices in a graph based on similarity/connectivity.

Non-linearly separable data k-nearest neighbor graph.

Can find this cut using eigendecomposition!
Simple Idea: Partition clusters along minimum cut in graph.

(a) Zachary Karate Club Graph
Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.
Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.
Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

- Let $\vec{v} \in \mathbb{R}^n$ be a **cut indicator**: $\vec{v}(i) = 1$ if $i \in S$. $\vec{v}(i) = -1$ if $i \in T$. Want \vec{v} to have roughly equal numbers of 1s and -1s. I.e., $\vec{v}^T \mathbf{1} \approx 0$.

(a) Zachary Karate Club Graph
For a graph with adjacency matrix A and degree matrix D, $L = D - A$ is the graph Laplacian.

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{bmatrix}
-\begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{bmatrix}
= \begin{bmatrix}
1 & -1 & 0 & 0 \\
-1 & 3 & -1 & -1 \\
0 & -1 & 2 & -1 \\
0 & -1 & -1 & 2
\end{bmatrix}
\]
For a graph with adjacency matrix A and degree matrix D, $L = D - A$ is the graph Laplacian.

For any vector \vec{v}, its ‘smoothness’ over the graph is given by:

$$\sum_{(i,j) \in E} (\vec{v}(i) - \vec{v}(j))^2 = \vec{v}^T L \vec{v}.$$
For a cut indicator vector $\vec{v} \in \{-1, 1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$:

1. $\vec{v}^T L \vec{v} = \sum_{(i,j) \in E} (\vec{v}(i) - \vec{v}(j))^2 = 4 \cdot \text{cut}(S, T)$.
For a cut indicator vector $\vec{v} \in \{-1, 1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$:

1. $\vec{v}^T L \vec{v} = \sum_{(i,j) \in E} (\vec{v}(i) - \vec{v}(j))^2 = 4 \cdot \text{cut}(S, T)$.
2. $\vec{v}^T \vec{1} = |T| - |S|$.
For a cut indicator vector $\vec{v} \in \{-1, 1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$:

1. $\vec{v}^T L \vec{v} = \sum_{(i,j) \in E} (\vec{v}(i) - \vec{v}(j))^2 = 4 \cdot cut(S, T)$.

2. $\vec{v}^T \vec{1} = |T| - |S|$.

Want to minimize both $\vec{v}^T L \vec{v}$ (cut size) and $\vec{v}^T \vec{1}$ (imbalance).
For a cut indicator vector $\vec{v} \in \{-1, 1\}^n$ with $\vec{v}(i) = -1$ for $i \in S$ and $\vec{v}(i) = 1$ for $i \in T$:

1. $\vec{v}^T L \vec{v} = \sum_{(i,j) \in E} (\vec{v}(i) - \vec{v}(j))^2 = 4 \cdot \text{cut}(S, T)$.
2. $\vec{v}^T \vec{1} = |T| - |S|$.

Want to minimize both $\vec{v}^T L \vec{v}$ (cut size) and $\vec{v}^T \vec{1}$ (imbalance).

Next Step: See how this dual minimization problem is naturally solved by eigendecomposition.
Assuming the graph is connected, the smallest eigenvector of the Laplacian is:

\[\vec{v}_n = \frac{1}{\sqrt{n}} \cdot \vec{1} = \arg \min_{\vec{v} \in \mathbb{R}^n \text{ with } \|\vec{v}\| = 1} \vec{v}^T L \vec{v} \]

with eigenvalue \(\vec{v}_n^T L \vec{v}_n = 0 \).

\(n \): number of nodes in graph, \(A \in \mathbb{R}^{n \times n} \): adjacency matrix, \(D \in \mathbb{R}^{n \times n} \): diagonal degree matrix, \(L \in \mathbb{R}^{n \times n} \): Laplacian matrix \(L = D - A \).
Assuming the graph is connected, the smallest eigenvector of the Laplacian is:

$$\vec{v}_n = \frac{1}{\sqrt{n}} \cdot \vec{1} = \arg \min\limits_{\vec{v} \in \mathbb{R}^n \text{ with } \|\vec{v}\| = 1} \vec{v}^T L \vec{v}$$

with eigenvalue $$\vec{v}_n^T L \vec{v}_n = 0$$. Why?

n: number of nodes in graph, $A \in \mathbb{R}^{n \times n}$: adjacency matrix, $D \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L = D - A$.
By Courant-Fischer, the second smallest eigenvector is given by:

$$\tilde{v}_{n-1} = \arg \min_{\tilde{v} \in \mathbb{R}^n \text{ with } \|\tilde{v}\| = 1, \tilde{v}_n = 0} \tilde{v}^T L \tilde{v}$$
By Courant-Fischer, the second smallest eigenvector is given by:

\[
\vec{v}_{n-1} = \arg \min_{\vec{v} \in \mathbb{R}^n \text{ with } \|\vec{v}\|=1, \vec{v}^T\vec{n}=0} \vec{v}^T L\vec{v}
\]

If \(\vec{v}_{n-1}\) were in \(\left\{-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right\}^n\) it would have:

- \(\vec{v}_{n-1}^T L\vec{v}_{n-1} = \frac{4}{n} \cdot \text{cut}(S, T)\) as small as possible given that

\[
\vec{v}_{n-1}^T \vec{v}_{n-1} = \frac{1}{\sqrt{n}} \vec{v}_{n-1}^T \vec{1} = \frac{|T| - |S|}{\sqrt{n}} = 0.
\]
By Courant-Fischer, the second smallest eigenvector is given by:

$$\vec{v}_{n-1} = \arg\min_{\vec{v} \in \mathbb{R}^n \text{ with } \|\vec{v}\|=1, \vec{v}^T \vec{1} = 0} \vec{v}^T L \vec{v}$$

If \vec{v}_{n-1} were in $\left\{-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right\}^n$ it would have:

- $\vec{v}_{n-1}^T L \vec{v}_{n-1} = \frac{4}{n} \cdot \text{cut}(S, T)$ as small as possible given that

$$\vec{v}_{n-1}^T \vec{v}_{n-1} = \left| \frac{T}{\sqrt{n}} - \frac{|S|}{\sqrt{n}} \right| = 0 .$$

- I.e., \vec{v}_{n-1} would indicate the smallest perfectly balanced cut.
By Courant-Fischer, the second smallest eigenvector is given by:

\[\vec{v}_{n-1} = \arg \min_{\vec{v} \in \mathbb{R}^n \text{ with } \|\vec{v}\| = 1, \vec{v}_n^T \vec{v} = 0} \vec{v}^T L \vec{v} \]

If \(\vec{v}_{n-1} \) were in \(\{-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\}^n \) it would have:

- \(\vec{v}_{n-1}^T L \vec{v}_{n-1} = \frac{4}{n} \cdot \text{cut}(S, T) \) as small as possible given that

\[\vec{v}_{n-1}^T \vec{v}_{n-1} = \frac{1}{\sqrt{n}} \vec{v}_{n-1}^T \vec{1} = \frac{|T| - |S|}{\sqrt{n}} = 0. \]

- i.e., \(\vec{v}_{n-1} \) would indicate the smallest perfectly balanced cut.
- The eigenvector \(\vec{v}_{n-1} \in \mathbb{R}^n \) is not generally binary, but still satisfies a ‘relaxed’ version of this property.
Find a good partition of the graph by computing

$$\mathbf{v}_{n-1} = \arg \min_{\mathbf{v} \in \mathbb{R}^d \text{ with } \|\mathbf{v}\| = 1, \mathbf{v}^T \mathbf{1} = 0} \mathbf{v}^T L \mathbf{v}$$

Set S to be all nodes with $\mathbf{v}_{n-1}(i) < 0$, T to be all with $\mathbf{v}_{n-1}(i) \geq 0$.
Find a good partition of the graph by computing

\[\vec{v}_{n-1} = \arg \min_{\vec{v} \in \mathbb{R}^d \text{ with } \|\vec{v}\|=1, \vec{v}^T \vec{1} = 0} \vec{v}^T L \vec{v} \]

Set \(S \) to be all nodes with \(\vec{v}_{n-1}(i) < 0 \), \(T \) to be all with \(\vec{v}_{n-1}(i) \geq 0 \).
Find a good partition of the graph by computing

$$\vec{v}_{n-1} = \arg \min_{\vec{v} \in \mathbb{R}^d \text{ with } \|\vec{v}\|=1, \vec{v}^T \vec{1}=0} \vec{v}^T L \vec{v}$$

Set S to be all nodes with $\vec{v}_{n-1}(i) < 0$, T to be all with $\vec{v}_{n-1}(i) \geq 0$.
Summary: To partition a graph, find the eigenvector of the Laplacian with the second smallest eigenvalue. Partition nodes based on whether corresponding value in eigenvector is positive/negative.

\[
\vec{v}_{n-1} = \arg \min_{\vec{v} \in \mathbb{R}^n, ||\vec{v}||=1, \vec{v}^T \vec{1} = 0} \vec{v}^T L \vec{v}
\]
• **Summary:** To partition a graph, find the eigenvector of the Laplacian with the second smallest eigenvalue. Partition nodes based on whether corresponding value in eigenvector is positive/negative.

\[
\vec{v}_{n-1} = \arg\min_{\vec{v} \in \mathbb{R}^n, \|\vec{v}\|=1, \vec{v}^T \vec{1} = 0} \vec{v}^T L \vec{v}
\]

• We argued this “should” partition graph along a small cut that separates the graph into large pieces.
• **Summary:** To partition a graph, find the eigenvector of the Laplacian with the second smallest eigenvalue. Partition nodes based on whether corresponding value in eigenvector is positive/negative.

\[\vec{v}_{n-1} = \arg \min_{\vec{v} \in \mathbb{R}^n, \|\vec{v}\|=1, \vec{v}^T \vec{1}=0} \vec{v}^T L \vec{v} \]

• We argued this “should” partition graph along a small cut that separates the graph into large pieces.

• Haven’t given formal guarantees; it’s difficult for general input graphs. But can consider randoms “natural” graphs...
• **Summary:** To partition a graph, find the eigenvector of the Laplacian with the second smallest eigenvalue. Partition nodes based on whether corresponding value in eigenvector is positive/negative.

$$\vec{v}_{n-1} = \arg \min_{\vec{v} \in \mathbb{R}^n, \|\vec{v}\|=1, \vec{v}^T \vec{I} = 0} \vec{v}^T L \vec{v}$$

• We argued this “should” partition graph along a small cut that separates the graph into large pieces.

• Haven’t given formal guarantees; it’s difficult for general input graphs. But can consider randoms “natural” graphs. . .

• **Common Approach:** Give a natural generative model for random inputs and analyze how the algorithm performs on inputs drawn from this model. Can be used to justify ℓ_2 linear regression, k-means clustering, etc.
Stochastic Block Model (Planted Partition Model): Let $G_n(p, q)$ be a distribution over graphs on n nodes, split randomly into two groups B and C, each with $n/2$ nodes.

- Any two nodes in the **same group** are connected with probability p (including self-loops).
- Any two nodes in **different groups** are connected with prob. $q < p$.
- Connections are independent.
Let G be a stochastic block model graph drawn from $G_n(p, q)$.

- Let $A \in \mathbb{R}^{n \times n}$ be the adjacency matrix of G, ordered in terms of group ID.

\[G_n(p, q): \text{stochastic block model distribution. } B, C: \text{groups with } n/2 \text{ nodes each. Connections are independent with probability } p \text{ between nodes in the same group, and probability } q \text{ between nodes not in the same group.} \]
Letting G be a stochastic block model graph drawn from $G_n(p, q)$ and $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[A])_{i,j} = p$ for i, j in same group, $(\mathbb{E}[A])_{i,j} = q$ otherwise.

$G_n(p, q)$: stochastic block model distribution. B, C: groups with $n/2$ nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.
Letting G be a stochastic block model graph drawn from $G_n(p, q)$ and $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[A])_{i,j} = p$ for i, j in same group, $(\mathbb{E}[A])_{i,j} = q$ otherwise.

What is rank(\mathbb{E}[A])? What are the eigenvectors and eigenvalues of \mathbb{E}[A]?

\begin{align*}
G_n(p, q): \text{stochastic block model distribution.} \quad B, C: \text{groups with } n/2 \text{ nodes each. Connections are independent with probability } p \text{ between nodes in the same group, and probability } q \text{ between nodes not in the same group.}
\end{align*}
If we compute \vec{v}_2 then we recover the communities B and C!
If we compute \vec{v}_2 then we recover the communities B and C!

- Can show that for $G \sim G_n(p, q)$, A is “close” to $\mathbb{E}[A]$ in some appropriate sense (matrix concentration inequality).
If we compute \vec{v}_2 then we recover the communities B and C!

- Can show that for $G \sim G_n(p, q)$, A is “close” to $E[A]$ in some appropriate sense (matrix concentration inequality).
- Second eigenvector of A is close to $[1, 1, 1, \ldots, -1, -1, -1]$ and gives a good estimate of the communities.
If we compute \vec{v}_2 then we recover the communities B and C!

- Can show that for $G \sim G_n(p, q)$, A is “close” to $E[A]$ in some appropriate sense (matrix concentration inequality).
- Second eigenvector of A is close to $[1, 1, 1, \ldots, -1, -1, -1]$ and gives a good estimate of the communities.

When rows/columns aren’t sorted by ID, second eigenvector is e.g., $[1, -1, 1, -1, \ldots, 1, 1, -1]$ and entries give community ids.
Letting G be a stochastic block model graph drawn from $G_n(p, q)$, $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix and L be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[L]$?
Letting G be a stochastic block model graph drawn from $G_n(p, q)$, $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix and L be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[L]$?

$$\mathbb{E}[L] = \mathbb{E}[D] - \mathbb{E}[A] = \left(\frac{n(p + q)}{2} \right) I - \mathbb{E}[A]$$

and so if $\mathbb{E}[A] \vec{x} = \lambda \vec{x}$ then

$$\mathbb{E}[L] \vec{x} = \left(\frac{n(p + q)}{2} - \lambda \right) \vec{x}$$
Letting G be a stochastic block model graph drawn from $G_n(p, q)$, $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix and L be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[L]$?

$$\mathbb{E}[L] = \mathbb{E}[D] - \mathbb{E}[A] = \left(\frac{n(p + q)}{2}\right) I - \mathbb{E}[A]$$

and so if $\mathbb{E}[A]x = \lambda x$ then

$$\mathbb{E}[L]x = \left(n(p + q)/2 - \lambda\right)x$$

Therefore the first and second eigenvalues of $\mathbb{E}[A]$ are the second and first eigenvectors of $\mathbb{E}[L]$.
Upshot: The second smallest eigenvector of $E[L]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.
Upshot: The second smallest eigenvector of $\mathbb{E}[L]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.

- If the matrices A and L were exactly equal to their expectation, partitioning using this eigenvector (i.e., spectral clustering) would exactly recover the two communities B and C.
Upshot: The second smallest eigenvector of $\mathbb{E}[L]$ is $\chi_{B,C}$ — the indicator vector for the cut between the communities.

- If the matrices A and L were exactly equal to their expectation, partitioning using this eigenvector (i.e., **spectral clustering**) would exactly recover the two communities B and C.

How do we show that a matrix is close to its expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.

- Random matrix theory is a very recent and cutting edge subfield of mathematics that is being actively applied in computer science, statistics, and ML.
Matrix Concentration Inequality: If $p \geq O\left(\frac{\log^4 n}{n}\right)$, then with high probability

$$\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).$$

where $\|\cdot\|_2$ is the matrix spectral norm (operator norm).

For any $X \in \mathbb{R}^{n \times d}$, $\|X\|_2 = \max_{z \in \mathbb{R}^d : \|z\|_2 = 1} \|Xz\|_2$.
Matrix Concentration Inequality: If $p \geq O \left(\frac{\log^4 n}{n} \right)$, then with high probability

$$\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).$$

where $\| \cdot \|_2$ is the matrix spectral norm (operator norm).

For any $X \in \mathbb{R}^{n \times d}$, $\|X\|_2 = \max_{z \in \mathbb{R}^d : \|z\|_2 = 1} \|Xz\|_2$.

For the stochastic block model application, we want to show that the second eigenvectors of A and $\mathbb{E}[A]$ are close. How does this relate to their difference in spectral norm?
Davis-Kahan Eigenvector Perturbation Theorem: Suppose $A, \overline{A} \in \mathbb{R}^{d \times d}$ are symmetric with $\|A - \overline{A}\|_2 \leq \epsilon$ and eigenvectors v_1, v_2, \ldots, v_d and $\overline{v}_1, \overline{v}_2, \ldots, \overline{v}_d$. Letting $\theta(v_i, \overline{v}_i)$ denote the angle between v_i and \overline{v}_i, for all i:

$$\sin[\theta(v_i, \overline{v}_i)] \leq \frac{\epsilon}{\min_{j \neq i} |\lambda_i - \lambda_j|}$$

where $\lambda_1, \ldots, \lambda_d$ are the eigenvalues of \overline{A}.

The errors get large if there’s eigenvalues with similar magnitudes.
Claim 1 (Matrix Concentration): For \(p \geq O\left(\frac{\log^4 n}{n}\right) \),

\[
\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).
\]

Claim 2 (Davis-Kahan): For \(p \geq O\left(\frac{\log^4 n}{n}\right) \),

\[
\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq 2} |\lambda_2 - \lambda_j|}
\]
Claim 1 (Matrix Concentration): For \(p \geq O\left(\frac{\log^4 n}{n}\right), \)

\[
\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{p n}).
\]

Claim 2 (Davis-Kahan): For \(p \geq O\left(\frac{\log^4 n}{n}\right), \)

\[
\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{p n})}{\min_{j \neq 2} |\lambda_2 - \lambda_j|}
\]

Recall: \(\mathbb{E}[A] \) has eigenvalues \(\lambda_1 = \frac{(p+q)n}{2}, \lambda_2 = \frac{(p-q)n}{2}, \lambda_i = 0 \) for \(i \geq 3. \)
Claim 1 (Matrix Concentration): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,

$$\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).$$

Claim 2 (Davis-Kahan): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,

$$\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq 2} |\lambda_2 - \lambda_j|}$$

Recall: $\mathbb{E}[A]$ has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \geq 3$.

$$\min_{j \neq 2} |\lambda_2 - \lambda_j| = \min\left(qn, \frac{(p-q)n}{2}\right).$$

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q < p$: connection probability between clusters. n: number of nodes. v_2, \bar{v}_2: second eigenvectors of A and $\mathbb{E}[A]$ respectively.
Claim 1 (Matrix Concentration): For \(p \geq O\left(\frac{\log^4 n}{n}\right) \),

\[\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}). \]

Claim 2 (Davis-Kahan): For \(p \geq O\left(\frac{\log^4 n}{n}\right) \),

\[\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq 2} |\lambda_2 - \lambda_j|} \]

Recall: \(\mathbb{E}[A] \) has eigenvalues \(\lambda_1 = \frac{(p+q)n}{2} \), \(\lambda_2 = \frac{(p-q)n}{2} \), \(\lambda_i = 0 \) for \(i \geq 3 \).

\[\min_{j \neq 2} |\lambda_2 - \lambda_j| = \min\left(qn, \frac{(p-q)n}{2}\right). \]

Typically, \(\frac{(p-q)n}{2} \) will be the minimum of these two gaps.

A adjacency matrix of random stochastic block model graph. \(p \): connection probability within clusters. \(q < p \): connection probability between clusters. \(n \): number of nodes. \(v_2, \bar{v}_2 \): second eigenvectors of \(A \) and \(\mathbb{E}[A] \) respectively.
Claim 1 (Matrix Concentration): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,

$$\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).$$

Claim 2 (Davis-Kahan): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,

$$\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq 2} |\lambda_2 - \lambda_j|} \leq \frac{O(\sqrt{pn})}{(p - q)n/2} = O\left(\frac{\sqrt{p}}{(p - q)\sqrt{n}}\right)$$

Recall: $\mathbb{E}[A]$ has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \geq 3$.

$$\min_{j \neq 2} |\lambda_2 - \lambda_j| = \min_{j \neq 2} \left|\frac{(p-q)n}{2}\right| = \min\left(qn, \frac{(p-q)n}{2}\right).$$

Typically, $\frac{(p-q)n}{2}$ will be the minimum of these two gaps.

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q < p$: connection probability between clusters. n: number of nodes. v_2, \bar{v}_2: second eigenvectors of A and $\mathbb{E}[A]$ respectively.
So Far: \(\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right) \).

\(A \) adjacency matrix of random stochastic block model graph. \(p \): connection probability within clusters. \(q < p \): connection probability between clusters. \(n \): number of nodes. \(v_2, \bar{v}_2 \): second eigenvectors of \(A \) and \(\mathbb{E}[A] \) respectively.
So Far: \(\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right) \). What does this give us?

- Can show that this implies \(\|v_2 - \bar{v}_2\|^2 \leq O\left(\frac{p}{(p-q)^2 n}\right) \) (exercise).

A adjacency matrix of random stochastic block model graph. \(p \): connection probability within clusters. \(q < p \): connection probability between clusters. \(n \): number of nodes.
\(v_2, \bar{v}_2 \): second eigenvectors of \(A \) and \(\mathbb{E}[A] \) respectively.
So Far: \(\sin \theta(v_2, \bar{v}_2) \leq O \left(\frac{\sqrt{p}}{(p-q)\sqrt{n}} \right) \). What does this give us?

- Can show that this implies \(\| v_2 - \bar{v}_2 \|_2^2 \leq O \left(\frac{p}{(p-q)^2 n} \right) \) (exercise).
- \(\bar{v}_2 \) is \(\frac{1}{\sqrt{n}} \chi_{B,C} \): the community indicator vector.

A adjacency matrix of random stochastic block model graph. \(p \): connection probability within clusters. \(q < p \): connection probability between clusters. \(n \): number of nodes. \(v_2, \bar{v}_2 \): second eigenvectors of \(A \) and \(\mathbb{E}[A] \) respectively.
So Far: \(\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right) \). What does this give us?

- Can show that this implies \(\|v_2 - \bar{v}_2\|_2^2 \leq O\left(\frac{p}{(p-q)^2 n}\right) \) (exercise).
- \(\bar{v}_2 \) is \(\frac{1}{\sqrt{n}} \chi_{B,C} \): the community indicator vector.
- Every \(i \) where \(v_2(i), \bar{v}_2(i) \) differ in sign contributes \(\geq \frac{1}{n} \) to \(\|v_2 - \bar{v}_2\|_2^2 \).

A adjacency matrix of random stochastic block model graph. \(p \): connection probability within clusters. \(q < p \): connection probability between clusters. \(n \): number of nodes. \(v_2, \bar{v}_2 \): second eigenvectors of \(A \) and \(\mathbb{E}[A] \) respectively.
So Far: \(\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right) \). What does this give us?

- Can show that this implies \(\|v_2 - \bar{v}_2\|_2^2 \leq O\left(\frac{p}{(p-q)^2 n}\right) \) (exercise).
- \(\bar{v}_2 \) is \(\frac{1}{\sqrt{n}} \chi_{B,C} \): the community indicator vector.

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} \\
\end{array}
\]

- Every \(i \) where \(v_2(i), \bar{v}_2(i) \) differ in sign contributes \(\geq \frac{1}{n} \) to \(\|v_2 - \bar{v}_2\|_2^2 \).
- So they differ in sign in at most \(O\left(\frac{p}{(p-q)^2}\right) \) positions.

A adjacency matrix of random stochastic block model graph. \(p \): connection probability within clusters. \(q < p \): connection probability between clusters. \(n \): number of nodes. \(v_2, \bar{v}_2 \): second eigenvectors of \(A \) and \(\mathbb{E}[A] \) respectively.
Upshot: If G is a stochastic block model graph with adjacency matrix A, if we compute its second large eigenvector v_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ nodes.