COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 12
CENTRAL LIMIT THEOREM
Bernstein Inequality (Simplified): Consider independent random variables X_1, \ldots, X_n falling in $[-1,1]$. Let $\mu = \mathbb{E}\left[\sum X_i\right]$, $\sigma^2 = \text{Var}\left[\sum X_i\right]$, and $s \leq \sigma$. Then:

$$\Pr\left(\left|\sum_{i=1}^{n} X_i - \mu\right| \geq s\sigma\right) \leq 2 \exp\left(-\frac{s^2}{4}\right).$$
Bernstein Inequality (Simplified): Consider independent random variables X_1, \ldots, X_n falling in $[-1,1]$. Let $\mu = \mathbb{E}[\sum X_i]$, $\sigma^2 = \text{Var}[\sum X_i]$, and $s \leq \sigma$. Then:

$$\Pr \left(\left| \sum_{i=1}^{n} X_i - \mu \right| \geq s\sigma \right) \leq 2\exp\left(-\frac{s^2}{4} \right).$$

Can plot this bound for different s:
Bernstein Inequality (Simplified): Consider independent random variables X_1, \ldots, X_n falling in [-1,1]. Let $\mu = \mathbb{E}[\sum X_i], \sigma^2 = \text{Var}[\sum X_i]$, and $s \leq \sigma$. Then:

$$\Pr \left(\left| \sum_{i=1}^{n} X_i - \mu \right| \geq s\sigma \right) \leq 2 \exp \left(-\frac{s^2}{4} \right).$$

Can plot this bound for different s:
Bernstein Inequality (Simplified): Consider independent random variables X_1, \ldots, X_n falling in $[-1,1]$. Let $\mu = \mathbb{E}[\sum X_i]$, $\sigma^2 = \text{Var}[\sum X_i]$, and $s \leq \sigma$. Then:

$$\Pr \left(\left| \sum_{i=1}^{n} X_i - \mu \right| \geq s\sigma \right) \leq 2 \exp \left(-\frac{s^2}{4} \right).$$

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.
Bernstein Inequality (Simplified): Consider independent random variables X_1, \ldots, X_n falling in $[-1,1]$. Let $\mu = \mathbb{E}[\sum X_i]$, $\sigma^2 = \text{Var}[\sum X_i]$, and $s \leq \sigma$. Then:

$$\Pr \left(\left| \sum_{i=1}^{n} X_i - \mu \right| \geq s\sigma \right) \leq 2 \exp \left(-\frac{s^2}{4} \right).$$

Can plot this bound for different s:

![Plot](image)

Looks a lot like a Gaussian (normal) distribution.

$\mathcal{N}(0, \sigma^2)$ has density $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}}$.
Bernstein Inequality (Simplified): Consider independent random variables X_1, \ldots, X_n falling in $[-1, 1]$. Let $\mu = \mathbb{E}[\sum X_i]$, $\sigma^2 = \text{Var}[\sum X_i]$, and $s \leq \sigma$. Then:

$$
\Pr \left(\left| \sum_{i=1}^n X_i - \mu \right| \geq s\sigma \right) \leq 2 \exp \left(-\frac{s^2}{4} \right).
$$

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

$\mathcal{N}(0, \sigma^2)$ has density $p(x) = \frac{1}{\sqrt{2\pi} \sigma^2} \cdot e^{-\frac{x^2}{2\sigma^2}}$.

2
$\mathcal{N}(0, \sigma^2)$ has density $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}}.$
$\mathcal{N}(0, \sigma^2)$ has density $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}}$.

Exercise: Using this can show that for $X \sim \mathcal{N}(0, \sigma^2)$: for any $s \geq 0$,

$$
\Pr(|X| \geq s \cdot \sigma) \leq O(1) \cdot e^{-\frac{s^2}{2}}.
$$
\[N(0, \sigma^2) \] has density \(p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}}. \)

Exercise: Using this can show that for \(X \sim N(0, \sigma^2) \): for any \(s \geq 0 \),

\[\Pr(|X| \geq s \cdot \sigma) \leq O(1) \cdot e^{-\frac{s^2}{2}}. \]

Essentially the same bound that Bernstein’s inequality gives!
GAUSSIAN TAILS

\[\mathcal{N}(0, \sigma^2) \] has density \(p(x) = \frac{1}{\sqrt{2\pi \sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}}. \)

Exercise: Using this can show that for \(X \sim \mathcal{N}(0, \sigma^2) \): for any \(s \geq 0 \),

\[\Pr(|X| \geq s \cdot \sigma) \leq O(1) \cdot e^{-\frac{s^2}{2}}. \]

Essentially the same bound that Bernstein’s inequality gives!

Central Limit Theorem Interpretation: Bernstein’s inequality gives a quantitative version of the CLT. The distribution of the sum of *bounded* independent random variables can be upper bounded with a Gaussian (normal) distribution.
Central Limit Theorem

Stronger Central Limit Theorem: The distribution of the sum of n *bounded* independent random variables converges to a Gaussian (normal) distribution as n goes to infinity.
Stronger Central Limit Theorem: The distribution of the sum of n bounded independent random variables converges to a Gaussian (normal) distribution as n goes to infinity.

- Why is the Gaussian distribution so important in statistics, science, ML, etc.?
Stronger Central Limit Theorem: The distribution of the sum of n *bounded* independent random variables converges to a Gaussian (normal) distribution as n goes to infinity.

- Why is the Gaussian distribution so important in statistics, science, ML, etc.?
- Many random variables can be approximated as the sum of a large number of small and roughly independent random effects. Thus, their distribution looks Gaussian by CLT.
SUMMARY OF FIRST SECTION
WHAT WE’VE COVERED

- **Probability Tools**: Linearity of Expectation, Linear of Variance of Independent Variables, Concentration Bounds (Markov, Chebyshev, Bernstein, Chernoff), Union Bound, Median Trick.

- **Hash Tables and Bloom Filters**: Analyzing collisions. Building 2-level hash tables. Bloom filters and false positive rates.

- **Locality Sensitive Hashing**: MinHash for Jaccard Similarity, SimHash for Cosine Similarity. Nearest Neighbor. All-Pairs Similarity Search.

- **Small Space Data Stream Algorithms**: a) distinct items, b) frequent elements, c) frequent moments (homework).

- **Johnson Lindenstrauss Lemma**: Reducing dimension of vectors via random projection such that pairwise distances are approximately preserved. Application to clustering.
Randomization is an important tool in working with large datasets.

Lets us solve ‘easy’ problems that get really difficult on massive datasets. Fast/space efficient look up (hash tables and bloom filters), distinct items counting, frequent items counting, near neighbor search (LSH), etc.

The analysis of randomized algorithms sometimes leads to complex output distributions, which we can’t compute exactly. We use concentration inequalities to bound these distributions and behaviors like accuracy, space usage, and runtime.

Concentration inequalities and probability tools used in randomized algorithms are also fundamental in statistics, machine learning theory, probabilistic modeling of complex systems, etc.
• Linearity of Expectation: For any random variables X_1, \ldots, X_n and constants c_1, \ldots, c_n,

$$\mathbb{E}[c_1 X_1 + \ldots + c_n X_n] = c_1 \mathbb{E}[X_1] + \ldots + c_n \mathbb{E}[X_n]$$
• **Linearity of Expectation:** For any random variables X_1, \ldots, X_n and constants c_1, \ldots, c_n,

$$
\mathbb{E}[c_1 X_1 + \ldots + c_n X_n] = c_1 \mathbb{E}[X_1] + \ldots + c_n \mathbb{E}[X_n]
$$

• **Independent Random Variables:** X_1, X_2, \ldots, X_n are independent random variables if for any set $S \subset [n]$ and values a_1, a_2, \ldots, a_n

$$
\Pr(X_i = a_i \text{ for all } i \in S) = \prod_{i \in S} \Pr(X_i = a_i)
$$

They are *k-wise independent* if this holds for S with $|S| \leq k$.
USEFUL PROBABILITY FACTS (1/2)

- **Linearity of Expectation:** For any random variables X_1, \ldots, X_n and constants c_1, \ldots, c_n,

 $$E[c_1 X_1 + \ldots + c_n X_n] = c_1 E[X_1] + \ldots + c_n E[X_n]$$

- **Independent Random Variables:** $X_1, X_2, \ldots X_n$ are independent random variables if for any set $S \subset [n]$ and values a_1, a_2, \ldots, a_n

 $$Pr(X_i = a_i \text{ for all } i \in S) = \prod_{i \in S} Pr(X_i = a_i).$$

 They are **k-wise independent** if this holds for S with $|S| \leq k$.

- **Linearity of Variance:** If X_1, \ldots, X_n are independent (in fact 2-wise independent suffices) then for any constants c_1, \ldots, c_n

 $$\text{Var}[c_1 X_1 + \ldots + c_n X_n] = c_1^2 \text{Var}[X_1] + \ldots + c_n^2 \text{Var}[X_n]$$
• **Union Bound**: For any events A_1, A_2, A_3, \ldots

\[
\Pr[\text{at least one of the events happens}] = \Pr \left[\bigcup_i A_i \right] \leq \sum_i \Pr[A_i].
\]
• **Union Bound:** For any events A_1, A_2, A_3, \ldots

$$\Pr[\text{at least one of the events happens}] = \Pr \left[\bigcup_i A_i \right] \leq \sum_i \Pr[A_i].$$

• An **indicator random variable** X just takes the values 0 or 1:

$$\mathbb{E}[X] = p \quad \text{Var}[X] = p(1 - p) \quad \text{where } p = \Pr[X = 1]$$
• **Union Bound:** For any events A_1, A_2, A_3, \ldots

\[
\Pr \left[\text{at least one of the events happens} \right] = \Pr \left[\bigcup_i A_i \right] \leq \sum_i \Pr[A_i].
\]

• An *indicator random variable* X just takes the values 0 or 1:

\[
\mathbb{E}[X] = p \quad \text{Var}[X] = p(1 - p) \quad \text{where } p = \Pr[X = 1]
\]

• If $Y = X_1 + \ldots + X_n$ where each X_i are independent and

\[
p = \Pr[X_1 = 1] = \ldots = \Pr[X_n = 1]
\]

then Y is a *binomial random variable*. Using linearity of expectation and variance,

\[
\mathbb{E}[Y] = np \quad \text{Var}[Y] = np(1 - p)
\]
Most of the analysis of hash functions that we’ve considered can be abstracted as “balls and bins” problems: we throw n balls and each ball is equally likely to land in one of m bins.
Most of the analysis of hash functions that we’ve considered can be abstracted as “balls and bins” problems: we throw n balls and each ball is equally likely to land in one of m bins.

Let R_i be number of balls bin i. Then $R_i \sim \text{Bin}(n, \frac{1}{m})$ and $\mathbb{E}[R_i] = \frac{n}{m}$, $\text{Var}[R_i] = \frac{n}{m} \cdot (1 - \frac{1}{m})$. R_i and R_j not independent!
Balls and Bins (1/2)

- Most of the analysis of hash functions that we’ve considered can be abstracted as “balls and bins” problems: we throw n balls and each ball is equally likely to land in one of m bins.

- Let R_i be number of balls bin i. Then $R_i \sim \text{Bin}(n, \frac{1}{m})$ and $\mathbb{E}[R_i] = \frac{n}{m}$, $\text{Var}[R_i] = \frac{n}{m} \cdot (1 - \frac{1}{m})$. R_i and R_j not independent!

- Union Bound implies $\Pr[\max(R_1, \ldots, R_m) > t] \leq \sum_i \Pr[R_i > t]$

- In the exam, you’ll be expected to do calculations like these.
BALLS AND BINS (1/2)

- Most of the analysis of hash functions that we’ve considered can be abstracted as “balls and bins” problems: we throw n balls and each ball is equally likely to land in one of m bins.
- Let R_i be number of balls bin i. Then $R_i \sim \text{Bin}(n, \frac{1}{m})$ and $\mathbb{E}[R_i] = \frac{n}{m}$, $\text{Var}[R_i] = \frac{n}{m} \cdot (1 - \frac{1}{m})$. R_i and R_j not independent!
- Union Bound implies $\Pr[\text{max}(R_1, \ldots, R_m) > t] \leq \sum_i \Pr[R_i > t]$
- $\Pr[\text{no collisions}] = \frac{m-1}{m} \cdot \frac{m-2}{m} \cdot \ldots \cdot \frac{m-(n-1)}{m}$

$$\Pr[\text{collisions}] = \Pr[\text{max}(R_1, \ldots, R_m) > 1] \leq 1/8 \text{ if } m > 4n^2$$

and more generally

$$\Pr[\text{max}(R_1, \ldots, R_m) \geq 2n/m] \leq m^2/n$$
Most of the analysis of hash functions that we’ve considered can be abstracted as “balls and bins” problems: we throw \(n \) balls and each ball is equally likely to land in one of \(m \) bins.

Let \(R_i \) be number of balls bin \(i \). Then \(R_i \sim \text{Bin}(n, \frac{1}{m}) \) and \(\mathbb{E}[R_i] = \frac{n}{m} \), \(\text{Var}[R_i] = \frac{n}{m} \cdot (1 - \frac{1}{m}) \). \(R_i \) and \(R_j \) not independent!

Union Bound implies \(\Pr[\max(R_1, \ldots, R_m) > t] \leq \sum_i \Pr[R_i > t] \)

\[
\Pr[\text{no collisions}] = \frac{m-1}{m} \cdot \frac{m-2}{m} \cdots \frac{m-(n-1)}{m}
\]

\[
\Pr[\text{collisions}] = \Pr[\max(R_1, \ldots, R_m) > 1] \leq \frac{1}{8} \text{ if } m > 4n^2
\]

and more generally

\[
\Pr[\max(R_1, \ldots, R_m) \geq 2n/m] \leq m^2/n
\]

In the exam, you’ll be expected to do calculations like these.
Let T be the number of bins where $R_i = 0$. We showed:

$$\mathbb{E}[T] = m(1 - 1/m)^n$$
• Let T be the number of bins where $R_i = 0$. We showed:

$$\mathbb{E}[T] = m(1 - 1/m)^n$$

• The probability the next k balls thrown all land in non-empty bins is

$$(1 - T/m)^k$$

and this lets us analyze the false positive rate of a Bloom filter.
• Hash function $h : U \rightarrow [n]$ is two universal if:

$$\Pr[h(x) = h(y)] \leq \frac{1}{n} \quad \text{for all } x \neq y \in U$$
• Hash function \(h : U \rightarrow [n] \) is **two universal** if:

\[
\Pr[h(x) = h(y)] \leq \frac{1}{n} \quad \text{for all } x \neq y \in U
\]

• Hash function \(h : U \rightarrow [n] \) is **\(k \)-wise independent** if \(\{h(e)\}_{e \in U} \) are \(k \)-wise independent and each \(h(e) \) is uniform in \([n]\).
• Hash function \(h : U \rightarrow [n] \) is two universal if:

\[
\Pr[h(x) = h(y)] \leq \frac{1}{n} \quad \text{for all } x \neq y \in U
\]

• Hash function \(h : U \rightarrow [n] \) is \(k \)-wise independent if \(\{h(e)\}_{e \in U} \) are \(k \)-wise independent and each \(h(e) \) is uniform in \([n]\).

• Hash function \(h : U \rightarrow [n] \) is fully independent if \(\{h(e)\}_{e \in U} \) are independent and each \(h(e) \) is uniform in \([n]\).
THREE MAIN CONCENTRATION BOUNDS

- **Markov.** For any non-negative random variable X and $t > 0$,
 \[\Pr[X \geq t] \leq \frac{\mathbb{E}[X]}{t} . \]
THREE MAIN CONCENTRATION BOUNDS

- **Markov.** For any non-negative random variable X and $t > 0$,
 \[
 \Pr[X \geq t] \leq \frac{\mathbb{E}[X]}{t}.
 \]

- **Chebyshev.** For any random variable X and $t > 0$,
 \[
 \Pr[X \geq t + \mathbb{E}[X]] \leq \Pr[|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}[X]}{t^2}.
 \]
THREE MAIN CONCENTRATION BOUNDS

• **Markov.** For any non-negative random variable X and $t > 0$,

$$\Pr[X \geq t] \leq \frac{\mathbb{E}[X]}{t}.$$

• **Chebyshev.** For any random variable X and $t > 0$,

$$\Pr[X \geq t + \mathbb{E}[X]] \leq \Pr[|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}[X]}{t^2}.$$

• **Chernoff.** Let X_1, \ldots, X_n be independent $\{0, 1\}$ random variables with $\mu = \mathbb{E}[\sum_i X_i]$. Then for any $\delta > 0$,

$$\Pr[|(\sum_i X_i) - \mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{\delta^2 \mu}{\delta + 2}\right).$$
THREE MAIN CONCENTRATION BOUNDS

- **Markov.** For any non-negative random variable X and $t > 0$,
 \[
 \Pr[X \geq t] \leq \mathbb{E}[X]/t.
 \]

- **Chebyshev.** For any random variable X and $t > 0$,
 \[
 \Pr[X \geq t + \mathbb{E}[X]] \leq \Pr[|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}[X]}{t^2}.
 \]

- **Chernoff.** Let X_1, \ldots, X_n be independent \(\{0, 1\}\) random variables with $\mu = \mathbb{E}[\sum_i X_i]$. Then for any $\delta > 0$,
 \[
 \Pr[|\sum_i X_i - \mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{\delta^2 \mu}{\delta + 2} \right).
 \]

- Generally, Chernoff gives better results than Chebyshev and Chebyshev gives better results than Markov. So choose bound based on how much you know about X.

Bernstein generalizes Chernoff to arbitrary bounded X_i variables.
• **Markov.** For any non-negative random variable X and $t > 0$,

\[\Pr[X \geq t] \leq \frac{\mathbb{E}[X]}{t}. \]

• **Chebyshev.** For any random variable X and $t > 0$,

\[\Pr[X \geq t + \mathbb{E}[X]] \leq \Pr[|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}[X]}{t^2}. \]

• **Chernoff.** Let X_1, \ldots, X_n be independent \{0, 1\} random variables with $\mu = \mathbb{E}[\sum_i X_i]$. Then for any $\delta > 0$,

\[\Pr[\left|\sum_i X_i - \mu\right| \geq \delta \mu] \leq 2 \exp \left(- \frac{\delta^2 \mu}{\delta + 2} \right). \]

• Generally, Chernoff gives better results than Chebyshev and Chebyshev gives better results than Markov. So choose bound based on how much you know about X.

• **Bernstein** generalizes Chernoff to arbitrary bounded X_i variables.
• Want to learn a quantity q. Suppose you have a randomized algorithm that returns X that has expectation q and variance σ^2.

\[\text{Median Trick: Let } t = t_1 t_2 \text{ where } t_1 = 4 \frac{\sigma^2}{\epsilon^2 q^2} \text{ and } t_2 = O(\log \frac{1}{\delta}). \] Let A_1 be average of first t_1 results, let A_2 be average of next t_1 results etc. Then, $\Pr[|A_i - q| \geq \epsilon q] \leq \frac{1}{4}$ and $\Pr[|\text{median}(A_1, \ldots, A_{t_2}) - q| \geq \epsilon q] \leq \delta$.

• Want to learn a quantity q. Suppose you have a randomized algorithm that returns X that has expectation q and variance σ^2.

• To get a good estimate of q, repeat algorithm t times to get X_1, \ldots, X_t and let $A = (X_1 + \ldots + X_t)/t$. Then, if $t = \frac{\sigma^2}{\delta \epsilon^2 q^2}$

$$\Pr[|A - q| \geq \epsilon q] \leq \frac{\text{Var}[A]}{\epsilon^2 q^2}$$
• Want to learn a quantity q. Suppose you have a randomized algorithm that returns X that has expectation q and variance σ^2.

• To get a good estimate of q, repeat algorithm t times to get X_1, \ldots, X_t and let $A = (X_1 + \ldots + X_t)/t$. Then, if $t = \frac{\sigma^2}{\delta \epsilon^2 q^2}$

$$
\Pr[|A - q| \geq \epsilon q] \leq \frac{\text{Var}[A]}{\epsilon^2 q^2} = \frac{\sigma^2}{\epsilon^2 q^2}
$$
• Want to learn a quantity \(q \). Suppose you have a randomized algorithm that returns \(X \) that has expectation \(q \) and variance \(\sigma^2 \).

• To get a good estimate of \(q \), repeat algorithm \(t \) times to get \(X_1, \ldots, X_t \) and let \(A = (X_1 + \ldots + X_t)/t \). Then, if \(t = \frac{\sigma^2}{\delta \epsilon^2 q^2} \)

\[
\Pr[|A - q| \geq \epsilon q] \leq \frac{\text{Var}[A]}{\epsilon^2 q^2} = \frac{\sigma^2}{t \epsilon^2 q^2} = \delta
\]
AVERAGING AND THE MEDIAN TRICK

- Want to learn a quantity q. Suppose you have a randomized algorithm that returns X that has expectation q and variance σ^2.

- To get a good estimate of q, repeat algorithm t times to get X_1, \ldots, X_t and let $A = (X_1 + \ldots + X_t)/t$. Then, if $t = \frac{\sigma^2}{\delta \epsilon^2 q^2}$

$$\Pr[|A - q| \geq \epsilon q] \leq \frac{\text{Var}[A]}{\epsilon^2 q^2} = \frac{\sigma^2}{t} = \frac{\sigma^2}{\epsilon^2 q^2} = \delta$$

- **Median Trick**: Let $t = t_1 t_2$ where $t_1 = \frac{4\sigma^2}{\epsilon^2 q^2}$ and $t_2 = O(\log \frac{1}{\delta})$. Let A_1 be average of first t_1 results, let A_2 be average of next t_1 results etc. Then,

$$\Pr[|A_i - q| \geq \epsilon q] \leq 1/4$$

and $\Pr[|\text{median}(A_1, \ldots, A_{t_2}) - q| \geq \epsilon q] \leq \delta$.

Input to both is a set of items S and both support queries of the form “Is $x \in S$?” in constant time.
Input to both is a set of items S and both support queries of the form "Is $x \in S$?" in constant time.

2-Level Hash Table:
- Space is $O(|S|) \times \text{"space required to store an element of } S\text{"}$
2-LEVEL HASH TABLES VS. BLOOM FILTER

• Input to both is a set of items S and both support queries of the form “Is $x \in S$?” in constant time.

• 2-Level Hash Table:
 • Space is $O(|S|) \times \text{"space required to store an element of } S\text{"}$

• Bloom Filter:
 • Does not actually store the items in S, just a binary array from which we make various deductions.
 • Uses only $O(|S|)$ space but at the cost of sometimes answering “yes” when answer should be “no” (a false positive).
 • If the Bloom Filter array is length m, false positive probability is roughly $\left(1 - e^{-k|S|/m}\right)^k$ where k is the number of hash functions used. Picking $k = \ln 2 \cdot m/|S|$ gives probability $1/2^{(\ln 2) m/|S|}$.

Also saw stacked hash tables in the homework.
2-LEVEL HASH TABLES VS. BLOOM FILTER

• Input to both is a set of items S and both support queries of the form “Is $x \in S$?” in constant time.

• **2-Level Hash Table:**
 • Space is $O(|S|) \times \text{“space required to store an element of } S\text{”}$

• **Bloom Filter:**
 • Does not actually store the items in S, just a binary array from which we make various deductions.
2-LEVEL HASH TABLES VS. BLOOM FILTER

• Input to both is a set of items S and both support queries of the form “Is $x \in S$?” in constant time.

• 2-Level Hash Table:
 • Space is $O(|S|) \times \text{“space required to store an element of } S\text{”}$

• Bloom Filter:
 • Does not actually store the items in S, just a binary array from which we make various deductions.
 • Uses only $O(|S|)$ space but at the cost of sometimes answering “yes” when answer should be “no” (a false positive)
2-Level Hash Tables vs. Bloom Filter

- Input to both is a set of items S and both support queries of the form “Is $x \in S$?” in constant time.

- 2-Level Hash Table:
 - Space is $O(|S|) \times \text{“space required to store an element of } S\text{”}$

- Bloom Filter:
 - Does not actually store the items in S, just a binary array from which we make various deductions.
 - Uses only $O(|S|)$ space but at the cost of sometimes answering “yes” when answer should be “no” (a false positive)
 - If the Bloom Filter array is length m, false positive probability is roughly $(1 - e^{-k|S|/m})^k$ where k is the number of hash functions used. Picking $k = \ln 2 \cdot m/|S|$ gives probability $1/2^{(\ln 2)m/|S|}$
2-LEVEL HASH TABLES VS. BLOOM FILTER

• Input to both is a set of items S and both support queries of the form “Is $x \in S$?” in constant time.

• 2-Level Hash Table:
 • Space is $O(|S|) \times \text{"space required to store an element of } S\text{"}$

• Bloom Filter:
 • Does not actually store the items in S, just a binary array from which we make various deductions.
 • Uses only $O(|S|)$ space but at the cost of sometimes answering “yes” when answer should be “no” (a false positive)
 • If the Bloom Filter array is length m, false positive probability is roughly $(1 - e^{-k|S|/m})^k$ where k is the number of hash functions used. Picking $k = \ln 2 \cdot m/|S|$ gives probability $1/2^{(\ln 2)m/|S|}$

• Also saw stacked hash tables in the homework.
• Designed a hash function for hashing sets such that for sets A and B,
\[\Pr[MH(A) = MH(B)] = J(A, B) = \frac{|A \cap B|}{|A \cup B|}. \]

\[
MH(A) = \min_{x \in A} h(x) \quad \text{where} \quad h : U \to [0, 1] \text{ is fully independent}
\]
• Designed a hash function for hashing sets such that for sets A and B, \(\Pr[\text{MH}(A) = \text{MH}(B)] = J(A, B) = \frac{|A \cap B|}{|A \cup B|} \).

$$
\text{MH}(A) = \min_{x \in A} h(x) \quad \text{where} \quad h : U \to [0, 1] \text{ is fully independent}
$$

• Can form signature of set A using r independent hash functions:

$$
\text{signature}(A) = (\text{MH}_1(A), \ldots, \text{MH}_r(A))
$$

Note $\Pr[\text{signature}(A) = \text{signature}(B)] = J(A, B)^r$.
• Designed a hash function for hashing sets such that for sets A and B,

$$\Pr[MH(A) = MH(B)] = J(A, B) = \frac{|A \cap B|}{|A \cup B|}.$$

$$MH(A) = \min_{x \in A} h(x) \text{ where } h : U \rightarrow [0, 1] \text{ is fully independent}$$

• Can form signature of set A using r independent hash functions:

$$\text{signature}(A) = (MH_1(A), \ldots, MH_r(A))$$

Note $\Pr[\text{signature}(A) = \text{signature}(B)] = J(A, B)^r$.

• Given rt independent hash functions, we can form t signatures

$$\text{signature}_1(A), \ldots, \text{signature}_t(A).$$

Then if $s = J(A, B)$,

$$\Pr[\text{signature}_i(A) = \text{signature}_i(B) \text{ for some } i] = 1 - (1 - s^r)^t.$$
• Designed a hash function for hashing sets such that for sets A and B,
\[\Pr[\text{MH}(A) = \text{MH}(B)] = J(A, B) = \frac{|A \cap B|}{|A \cup B|}. \]

\[\text{MH}(A) = \min_{x \in A} h(x) \text{ where } h : U \to [0, 1] \text{ is fully independent} \]

• Can form signature of set A using r independent hash functions:
\[\text{signature}(A) = (\text{MH}_1(A), \ldots, \text{MH}_r(A)) \]

Note $\Pr[\text{signature}(A) = \text{signature}(B)] = J(A, B)^r$.

• Given rt independent hash functions, we can form t signatures
\[\text{signature}_1(A), \ldots, \text{signature}_t(A). \]
Then if $s = J(A, B), \Pr[\text{signature}_i(A) = \text{signature}_i(B) \text{ for some } i] = 1 - (1 - s^r)^t$.

• To find all pairs of similar sets amongst A_1, A_2, A_3, \ldots only compare a pair if there exists i, their ith signatures match.
• We want to compute something about the stream x_1, x_2, \ldots, x_m with only one pass over the stream and limited space.
• We want to compute something about the stream x_1, x_2, \ldots, x_m with only one pass over the stream and limited space.
• Let f_i be the number of values in stream that equal i.
• We want to compute something about the stream x_1, x_2, \ldots, x_m with only one pass over the stream and limited space.

• Let f_i be the number of values in stream that equal i.

 • Distinct Items: Can estimate $D = |\{i : f_i > 0\}$ up to a factor $1 + \epsilon$ with probability $1 - \delta$ in $O(\epsilon^{-2} \log 1/\delta)$ space. Main idea was exploiting the fact the expected value of the minimum of d number picked randomly in $[0, 1]$ is $1/(d + 1)$.

• We want to compute something about the stream x_1, x_2, \ldots, x_m with only one pass over the stream and limited space.
• Let f_i be the number of values in stream that equal i.
 • Distinct Items: Can estimate $D = |\{i : f_i > 0\}$ up to a factor $1 + \epsilon$ with probability $1 - \delta$ in $O(\epsilon^{-2} \log 1/\delta)$ space. Main idea was exploiting the fact the expected value of the minimum of d number picked randomly in $[0, 1]$ is $1/(d + 1)$.
 • Frequently Elements Items: Can return a set S such that:

\[
 f_i \geq \frac{m}{k} \text{ implies } i \in S \quad \text{and} \quad i \in S \text{ implies } f_i \geq \frac{m(1 - \epsilon)}{k}
\]

with probability $1 - \delta$ in $O(k/\epsilon \cdot \log 1/\delta)$ space.
• Sum of Powers: In the homework we considered estimating quantities such as $\sum f_i^k$.
Count-Min Sketch: A random hashing based method closely related to bloom filters.
Count-Min Sketch: A random hashing based method closely related to bloom filters.

random hash function h

m length array A
Count-Min Sketch: A random hashing based method closely related to bloom filters.
Count-Min Sketch: A random hashing based method closely related to bloom filters.

Use $A[h(x)]$ to estimate $f(x)$, the frequency of x in the stream.

- **Claim:** $A[h(x)] \geq f(x)$.
- **Claim:** $A[h(x)] \leq f(x) + 2n/m$ with probability at least $1/2$.
Count-Min Sketch: A random hashing based method closely related to bloom filters.

Use $A[h(x)]$ to estimate $f(x)$, the frequency of x in the stream.

- **Claim:** $A[h(x)] \geq f(x)$.
- **Claim:** $A[h(x)] \leq f(x) + 2n/m$ with probability at least $1/2$.

How can we increase this probability to $1 - \delta$ for arbitrary $\delta > 0$?
• Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$.

• Then $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + 2n/m] \geq 1 - \frac{1}{2^t}$.

• Setting $t = \log(1/\delta)$ ensures probability is at least $1 - \delta$.

• Setting $m = 2^{k/\epsilon}$ ensures $2n/m = \epsilon n/k$ and that's enough to determine whether we need to output the element.
Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$.

Then $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + \frac{2n}{m}] \geq 1 - \frac{1}{2^t}$.

Setting $t = \log(1/\delta)$ ensures the probability is at least $1 - \delta$.

Setting $m = 2^{k/\epsilon}$ ensures $\frac{2n}{m} = \frac{\epsilon}{k}$ and that's enough to determine whether we need to output the element.
• Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in \{1\ldots t\}} A_i[h_i(x)]$.

• Then $\Pr[f(x) - \tilde{f}(x) \leq f(x) + 2\frac{n}{m}] \geq 1 - \frac{1}{2^t}$.

• Setting $t = \log(1/\delta)$ ensures probability is at least $1 - \delta$.

• Setting $m = 2^{k/\epsilon}$ ensures $2\frac{n}{m} = \epsilon$ and that's enough to determine whether we need to output the element.
Count-Min Sketch Accuracy

- Estimate \(f(x) \) with \(\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)] \).
- Then \(\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + 2n/m] \geq 1 - 1/2^t \).
- Setting \(t = \log(1/\delta) \) ensures probability is at least \(1 - \delta \).
- Setting \(m = 2^k/\epsilon \) ensures \(2n/m = \epsilon n/k \) and that's enough to determine whether we need to output the element.

![Diagram of Count-Min Sketch](image)

<table>
<thead>
<tr>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(\cdots)</th>
<th>(A_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 5 1 0 6 12 104 1 3 4</td>
<td>1 6 1 10 78 80 4 11 3 5</td>
<td></td>
<td>90 1 52 6 3 12 33 9 3 2</td>
</tr>
</tbody>
</table>

t random hash functions

- \(h_1, h_2, \ldots, h_t \)
Count-Min Sketch Accuracy

- Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$.
- Then $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + 2n/m] \geq 1 - 1/2^t$.
- Setting $t = \log(1/\delta)$ ensures probability is at least $1 - \delta$.
- Setting $m = \frac{2^k}{\epsilon}$ ensures $\frac{2n}{m} = \frac{\epsilon n}{k}$ and that's enough to determine whether we need to output the element.

![Diagram showing t random hash functions h_1, h_2, \ldots, h_t and t length m arrays A_1, A_2, \ldots, A_t.]

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_2</th>
<th>A_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 5</td>
<td>1 6</td>
<td>90 1</td>
</tr>
<tr>
<td>1 0</td>
<td>1 10</td>
<td>52 6</td>
</tr>
<tr>
<td>6 12</td>
<td>78 80</td>
<td>3 12</td>
</tr>
<tr>
<td>12</td>
<td>4 11</td>
<td>33 9</td>
</tr>
<tr>
<td>104</td>
<td>3 11</td>
<td>2 3</td>
</tr>
<tr>
<td>4 1</td>
<td>3 5</td>
<td></td>
</tr>
</tbody>
</table>
count-min sketch accuracy

- Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in \{1, \ldots, t\}} A_i[h_i(x)]$.

- Then $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + 2n/m] \geq 1 - \frac{1}{2^t}$.

- Setting $t = \log(1/\delta)$ ensures probability is at least $1 - \delta$.

- Setting $m = 2^k/\epsilon$ ensures $2n/m = \epsilon n/k$ and that's enough to determine whether we need to output the element.
Estimate \(f(x) \) with \(\tilde{f}(x) = \min_{i \in [t]} A_i[\text{hash}_i(x)] \).

Setting \(t = \log(1/\delta) \) ensures probability is at least \(1 - \frac{1}{2^t} \).

Setting \(m = 2^k/\epsilon \) ensures \(\frac{2n}{m} = \epsilon \frac{n}{k} \) and that's enough to determine whether we need to output the element.
Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$.

Then $Pr[f(x) \leq \tilde{f}(x) \leq f(x) + 2n/m] \geq 1 - 1/2^t$.

Setting $t = \log(1/\delta)$ ensures probability is at least $1 - \delta$.

Setting $m = 2^{k/\epsilon}$ ensures $2n/m = \epsilon n/k$ and that's enough to determine whether we need to output the element.
\textbf{COUNT-MIN SKETCH ACCURACY}

- Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$.
- Then $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + 2n/m] \geq 1 - 1/2^t$.

\begin{itemize}
 \item Setting $t = \log(1/\delta)$ ensures probability is at least $1 - \delta$.
 \item Setting $m = 2^k/\epsilon$ ensures $2n/m = \epsilon n/k$ and that's enough to determine whether we need to output the element.
\end{itemize}
• Estimate $f(x)$ with $	ilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$.
• Then $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + 2n/m] \geq 1 - 1/2^t$.
• Setting $t = \log(1/\delta)$ ensures probability is at least $1 - \delta$.
• Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$.
• Then $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + 2n/m] \geq 1 - 1/2^t$.
• Setting $t = \log(1/\delta)$ ensures probability is at least $1 - \delta$.
• Setting $m = 2k/\epsilon$ ensures $2n/m = \epsilon n/k$ and that’s enough to determine whether we need to output the element.
Johnson Lindenstrauss Lemma: If $\mathbf{M} \in \mathbb{R}^{m \times d}$ is a random matrix with $m = O \left(\epsilon^{-2} \log n \right)$, for $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \| \vec{x}_i - \vec{x}_j \|_2 \leq \| \mathbf{M} \vec{x}_i - \mathbf{M} \vec{x}_j \|_2 \leq (1 + \epsilon) \| \vec{x}_i - \vec{x}_j \|_2$$

where $\| \vec{z} \|_2^2$ is the sum of squared entries of \vec{z}.
Johnson Lindenstrauss Lemma: If $\mathbf{M} \in \mathbb{R}^{m \times d}$ is a random matrix with $m = O\left(\epsilon^{-2} \log n\right)$, for $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \leq \|\mathbf{M}\vec{x}_i - \mathbf{M}\vec{x}_j\|_2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2$$

where $\|\vec{z}\|_2^2$ is the sum of squared entries of \vec{z}.

Proof Idea:
Johnson Lindenstrauss Lemma: If $M \in \mathbb{R}^{m \times d}$ is a random matrix with $m = O(\epsilon^{-2} \log n)$, for $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \leq \|M\vec{x}_i - M\vec{x}_j\|_2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2$$

where $\|\vec{z}\|_2^2$ is the sum of squared entries of \vec{z}.

Proof Idea:

- Follows from Distributional JL: If $M \in \mathbb{R}^{m \times d}$ has $\mathcal{N}(0, 1/m)$ entries where $m = O(\epsilon^{-2} \log(1/\delta))$ then for any $\vec{y} \in \mathbb{R}^d$, $\|M\vec{y}\|_2 \approx \|\vec{y}\|_2$ with probability at least $1 - \delta$.
Johnson Lindenstrauss Lemma: If $M \in \mathbb{R}^{m \times d}$ is a random matrix with $m = O\left(\epsilon^{-2} \log n\right)$, for $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \leq \|M\vec{x}_i - M\vec{x}_j\|_2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2$$

where $\|\vec{z}\|_2^2$ is the sum of squared entries of \vec{z}.

Proof Idea:

- Follows from Distributional JL: If $M \in \mathbb{R}^{m \times d}$ has $N(0, 1/m)$ entries where $m = O(\epsilon^{-2} \log(1/\delta))$ then for any $\vec{y} \in \mathbb{R}^d$, $\|M\vec{y}\|_2 \approx \|\vec{y}\|_2$ with probability at least $1 - \delta$.
- To prove Distributional JL Lemma:
Johnson Lindenstrauss Lemma: If $M \in \mathbb{R}^{m \times d}$ is a random matrix with $m = O(\epsilon^{-2} \log n)$, for $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \leq \|M\vec{x}_i - M\vec{x}_j\|_2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2$$

where $\|\vec{z}\|_2^2$ is the sum of squared entries of \vec{z}.

Proof Idea:

- Follows from Distributional JL: If $M \in \mathbb{R}^{m \times d}$ has $N(0, 1/m)$ entries where $m = O(\epsilon^{-2} \log(1/\delta))$ then for any $\vec{y} \in \mathbb{R}^d$, $\|M\vec{y}\|_2 \approx \|\vec{y}\|_2$ with probability at least $1 - \delta$.

- To prove Distributional JL Lemma:
 - By linearity of expectation and variance, $\mathbb{E}[\|M\vec{y}\|_2^2] = \|\vec{y}\|_2^2$.
Johnson Lindenstrauss Lemma: If $M \in \mathbb{R}^{m \times d}$ is a random matrix with $m = O\left(\epsilon^{-2}\log n\right)$, for $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \leq \|M\vec{x}_i - M\vec{x}_j\|_2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2$$

where $\|\vec{Z}\|_2^2$ is the sum of squared entries of \vec{Z}.

Proof Idea:

- Follows from Distributional JL: If $M \in \mathbb{R}^{m \times d}$ has $N(0, 1/m)$ entries where $m = O(\epsilon^{-2}\log(1/\delta))$ then for any $\vec{y} \in \mathbb{R}^d$, $\|M\vec{y}\|_2 \approx \|\vec{y}\|_2$ with probability at least $1 - \delta$.
- To prove Distributional JL Lemma:
 - By linearity of expectation and variance, $\mathbb{E}[\|M\vec{y}\|_2^2] = \|\vec{y}\|_2^2$.
 - $\|M\vec{y}\|_2^2$ is the sum of m squared independent normal distributions and is tightly concentrated around the expectation.
EXTRA SLIDE
Our algorithm uses continuous valued fully random hash functions.
Our algorithm uses continuous valued fully random hash functions. Can't be implemented...

• The idea of using the minimum hash value of x_1, \ldots, x_n to estimate the number of distinct elements naturally extends to when the hash functions map to discrete values.

• Flajolet-Martin (LogLog) algorithm and HyperLogLog. Estimate # distinct elements based on maximum number of trailing zeros m. The more distinct hashes we see, the higher we expect this maximum to be.
Our algorithm uses continuous valued fully random hash functions. Can't be implemented...

- The idea of using the minimum hash value of x_1, \ldots, x_n to estimate the number of distinct elements naturally extends to when the hash functions map to discrete values.
Our algorithm uses continuous valued fully random hash functions. Can't be implemented...

- The idea of using the minimum hash value of x_1, \ldots, x_n to estimate the number of distinct elements naturally extends to when the hash functions map to discrete values.
- Flajolet-Martin (LogLog) algorithm and HyperLogLog.
DISTINCT ELEMENTS IN PRACTICE

Our algorithm uses continuous valued fully random hash functions. Can't be implemented...

- The idea of using the minimum hash value of x_1, \ldots, x_n to estimate the number of distinct elements naturally extends to when the hash functions map to discrete values.
- Flajolet-Martin (LogLog) algorithm and HyperLogLog.

<table>
<thead>
<tr>
<th>$h(x_1)$</th>
<th>1010010</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(x_2)$</td>
<td>1001100</td>
</tr>
<tr>
<td>$h(x_3)$</td>
<td>1001110</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$h(x_n)$</td>
<td>1011000</td>
</tr>
</tbody>
</table>
DISTINCT ELEMENTS IN PRACTICE

Our algorithm uses continuous valued fully random hash functions. Can't be implemented...

- The idea of using the minimum hash value of x_1, \ldots, x_n to estimate the number of distinct elements naturally extends to when the hash functions map to discrete values.
- Flajolet-Martin (LogLog) algorithm and HyperLogLog.

$h(x_1)$	1010010
$h(x_2)$	1001100
$h(x_3)$	1001110
...	...
$h(x_n)$	1011000

Estimate # distinct elements based on maximum number of trailing zeros m.
DISTINCT ELEMENTS IN PRACTICE

Our algorithm uses continuous valued fully random hash functions. Can't be implemented...

- The idea of using the minimum hash value of x_1, \ldots, x_n to estimate the number of distinct elements naturally extends to when the hash functions map to discrete values.
- Flajolet-Martin (LogLog) algorithm and HyperLogLog.

<table>
<thead>
<tr>
<th>$h(x_1)$</th>
<th>1010010</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(x_2)$</td>
<td>1001100</td>
</tr>
<tr>
<td>$h(x_3)$</td>
<td>1001110</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$h(x_n)$</td>
<td>1011000</td>
</tr>
</tbody>
</table>

Estimate # distinct elements based on maximum number of trailing zeros m.

The more distinct hashes we see, the higher we expect this maximum to be.
Flajolet-Martin (LogLog) algorithm and HyperLogLog.

<table>
<thead>
<tr>
<th>(h(x_i))</th>
<th>1010010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h(x_2))</td>
<td>1001100</td>
</tr>
<tr>
<td>(h(x_3))</td>
<td>1001110</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>(h(x_n))</td>
<td>1011000</td>
</tr>
</tbody>
</table>

Estimate \# distinct elements based on maximum number of trailing zeros \(m \).
Flajolet-Martin (LogLog) algorithm and HyperLogLog.

$h(x_1)$	1010010
$h(x_2)$	1001100
$h(x_3)$	1001110
\vdots	\vdots
$h(x_n)$	1011000

Estimate $\#$ distinct elements based on maximum number of trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

a) $O(1)$
 b) $O(\log d)$
 c) $O(\sqrt{d})$
 d) $O(d)$
Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate \# distinct elements based on maximum number of trailing zeros \(m \).

<table>
<thead>
<tr>
<th>(h(x_i))</th>
<th>1010010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h(x_2))</td>
<td>1001100</td>
</tr>
<tr>
<td>(h(x_3))</td>
<td>1001110</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(h(x_n))</td>
<td>1011000</td>
</tr>
</tbody>
</table>

With \(d \) distinct elements, roughly what do we expect \(m \) to be?

a) \(O(1) \)

b) \(O(\log d) \)
c) \(O(\sqrt{d}) \)
d) \(O(d) \)
Flajolet-Martin (LogLog) algorithm and HyperLogLog.

<table>
<thead>
<tr>
<th>h(x₁)</th>
<th>1010010</th>
</tr>
</thead>
<tbody>
<tr>
<td>h(x₂)</td>
<td>1001100</td>
</tr>
<tr>
<td>h(x₃)</td>
<td>1001110</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>h(xᵣ)</td>
<td>1011000</td>
</tr>
</tbody>
</table>

Estimate \# distinct elements based on maximum number of trailing zeros \(m \).

With \(d \) distinct elements, roughly what do we expect \(m \) to be?

\[
\Pr(h(x_i) \text{ has } x \text{ trailing zeros}) = \]

\[
\text{Total Space: } O(\log \log d \epsilon^2 + \log d) \text{ for an } \epsilon \text{ approximate count.}
\]

Note: Careful averaging of estimates from multiple hash functions.
LOGLOG COUNTING OF DISTINCT ELEMENTS

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

```
<table>
<thead>
<tr>
<th>h(x_i)</th>
<th>1010010</th>
</tr>
</thead>
<tbody>
<tr>
<td>h(x_2)</td>
<td>1001100</td>
</tr>
<tr>
<td>h(x_3)</td>
<td>1001110</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>h(x_n)</td>
<td>1011000</td>
</tr>
</tbody>
</table>
```

Estimate \# distinct elements based on maximum number of trailing zeros \(m \).

With \(d \) distinct elements, roughly what do we expect \(m \) to be?

\[
Pr(h(x_i) \text{ has } x \text{ trailing zeros}) = \frac{1}{2^x}
\]

Note: Careful averaging of estimates from multiple hash functions.
Flajolet-Martin (LogLog) algorithm and HyperLogLog.

<table>
<thead>
<tr>
<th>$h(x_1)$</th>
<th>1010010</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(x_2)$</td>
<td>1001100</td>
</tr>
<tr>
<td>$h(x_3)$</td>
<td>1001110</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$h(x_n)$</td>
<td>1011000</td>
</tr>
</tbody>
</table>

Estimate \# distinct elements based on maximum number of trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

$$\Pr(h(x_i) \text{ has } \log d \text{ trailing zeros}) = \frac{1}{2^\log d}$$
Flajolet-Martin (LogLog) algorithm and HyperLogLog.

<table>
<thead>
<tr>
<th>$h(x_1)$</th>
<th>1010010</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(x_2)$</td>
<td>1001100</td>
</tr>
<tr>
<td>$h(x_3)$</td>
<td>1001110</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$h(x_n)$</td>
<td>1011000</td>
</tr>
</tbody>
</table>

Estimate \# distinct elements based on maximum number of trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

$$\Pr(h(x_i) \text{ has } \log d \text{ trailing zeros}) = \frac{1}{2^{\log d}} = \frac{1}{d}.$$
Flajolet-Martin (LogLog) algorithm and HyperLogLog.

<table>
<thead>
<tr>
<th>$h(x_1)$</th>
<th>1010010</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(x_2)$</td>
<td>1001100</td>
</tr>
<tr>
<td>$h(x_3)$</td>
<td>1001110</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$h(x_n)$</td>
<td>1011000</td>
</tr>
</tbody>
</table>

Estimate $\#$ distinct elements based on maximum number of trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

$$\Pr(h(x_i) \text{ has } \log d \text{ trailing zeros}) = \frac{1}{2^{\log d}} = \frac{1}{d}.$$

So with d distinct hashes, expect to see 1 with $\log d$ trailing zeros. Expect $m \approx \log d$.

Total Space: $O(\log \log d \epsilon^2 + \log d)$ for an ϵ approximate count.

Note: Careful averaging of estimates from multiple hash functions.
Flajolet-Martin (LogLog) algorithm and HyperLogLog.

<table>
<thead>
<tr>
<th>h(x₁)</th>
<th>1010010</th>
</tr>
</thead>
<tbody>
<tr>
<td>h(x₂)</td>
<td>1001100</td>
</tr>
<tr>
<td>h(x₃)</td>
<td>1001110</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>h(xₙ)</td>
<td>1011000</td>
</tr>
</tbody>
</table>

Estimate \(\# \) distinct elements based on maximum number of trailing zeros \(m \).

With \(d \) distinct elements, roughly what do we expect \(m \) to be?

\[
\Pr(h(x_i) \text{ has } \log d \text{ trailing zeros}) = \frac{1}{2^{\log d}} = \frac{1}{d}.
\]

So with \(d \) distinct hashes, expect to see 1 with \(\log d \) trailing zeros. Expect \(m \approx \log d \). \(m \) takes \(\log \log d \) bits to store.
Flajolet-Martin (LogLog) algorithm and HyperLogLog.

<table>
<thead>
<tr>
<th>(h(x_1))</th>
<th>1010010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h(x_2))</td>
<td>1001100</td>
</tr>
<tr>
<td>(h(x_3))</td>
<td>1001110</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(h(x_n))</td>
<td>1011000</td>
</tr>
</tbody>
</table>

Estimate \# distinct elements based on maximum number of trailing zeros \(m \).

With \(d \) distinct elements, roughly what do we expect \(m \) to be?

\[
\Pr(h(x_i) \text{ has } \log d \text{ trailing zeros}) = \frac{1}{2^{\log d}} = \frac{1}{d}.
\]

So with \(d \) distinct hashes, expect to see 1 with \(\log d \) trailing zeros. Expect \(m \approx \log d \). \(m \) takes \(\log \log d \) bits to store.

Total Space: \(O\left(\frac{\log \log d}{\epsilon^2} + \log d\right) \) for an \(\epsilon \) approximate count.
Flajolet-Martin (LogLog) algorithm and HyperLogLog.

$h(x_1)$	1010010
$h(x_2)$	1001100
$h(x_3)$	1001110
\vdots	\vdots
$h(x_n)$	1011000

Estimate # distinct elements based on maximum number of trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

$$\Pr(h(x_i) \text{ has } \log d \text{ trailing zeros}) = \frac{1}{2^{\log d}} = \frac{1}{d}.$$

So with d distinct hashes, expect to see 1 with $\log d$ trailing zeros. Expect $m \approx \log d$. m takes $\log \log d$ bits to store.

Total Space: $O \left(\frac{\log \log d}{\epsilon^2} + \log d \right)$ for an ϵ approximate count.

Note: Careful averaging of estimates from multiple hash functions.
Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

\[
\text{space used } = O \left(\frac{\log \log d}{\epsilon^2} + \log d \right)
\]
Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

\[
\text{space used} = O \left(\frac{\log \log d}{\epsilon^2} + \log d \right)
\]

\[= 1.04 \cdot \left\lceil \log_2 \log_2 d \right\rceil \epsilon^2 + \left\lceil \log_2 d \right\rceil \text{ bits}\]

1. 1.04 is the constant in the HyperLogLog analysis. Not important!
Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

\[
\text{space used} = O \left(\frac{\log \log d}{\epsilon^2} + \log d \right)
\]

\[
= 1.04 \cdot \left\lceil \log_2 \log_2 d \right\rceil \cdot \frac{1}{\epsilon^2} + \left\lceil \log_2 d \right\rceil \text{ bits}^1
\]

\[
= 1.04 \cdot 5 \cdot \frac{1}{.02^2} + 30 = 13030 \text{ bits} \approx 1.6 \text{ kB}
\]
Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

\[
\text{space used} = O \left(\frac{\log \log d}{\epsilon^2} + \log d \right)
\]

\[
= 1.04 \cdot \left\lceil \log_2 \log_2 d \right\rceil + \left\lceil \log_2 d \right\rceil \text{ bits}^1
\]

\[
= \frac{1.04 \cdot 5}{.02^2} + 30 = 13030 \text{ bits} \approx 1.6 \text{ kB}!
\]

Mergeable Sketch: Consider the case (essentially always in practice) that the items are processed on different machines.

1. 1.04 is the constant in the HyperLogLog analysis. Not important!
Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

\[
\text{space used} = O \left(\frac{\log \log d}{\epsilon^2} + \log d \right)
\]

\[
= \frac{1.04 \cdot \lceil \log_2 \log_2 d \rceil}{\epsilon^2} + \lceil \log_2 d \rceil \text{ bits}^1
\]

\[
= \frac{1.04 \cdot 5}{.02^2} + 30 = 13030 \text{ bits} \approx 1.6 \text{ kB}!
\]

Mergeable Sketch: Consider the case (essentially always in practice) that the items are processed on different machines.

- Given data structures (sketches) \(HLL(x_1, \ldots, x_n), HLL(y_1, \ldots, y_n)\) it is easy to merge them to give \(HLL(x_1, \ldots, x_n, y_1, \ldots, y_n)\).

1. 1.04 is the constant in the HyperLogLogLog analysis. Not important!
Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

\[
\text{space used} = O \left(\frac{\log \log d}{\epsilon^2} + \log d \right)
\]

\[
= \frac{1.04 \cdot \lceil \log_2 \log_2 d \rceil}{\epsilon^2} + \lceil \log_2 d \rceil \text{ bits}\]

\[
= \frac{1.04 \cdot 5}{.02^2} + 30 = 13030 \text{ bits} \approx 1.6 \text{ kB}!
\]

Mergeable Sketch: Consider the case (essentially always in practice) that the items are processed on different machines.

- Given data structures (sketches) \(HLL(x_1, \ldots, x_n), HLL(y_1, \ldots, y_n) \) it is easy to merge them to give \(HLL(x_1, \ldots, x_n, y_1, \ldots, y_n) \). **How?**

1. 1.04 is the constant in the HyperLogLog analysis. Not important!
Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

\[
\text{space used} = O \left(\frac{\log \log d}{\epsilon^2} + \log d \right)
\]

\[
= \frac{1.04 \cdot [\log_2 \log_2 d]}{\epsilon^2} + [\log_2 d] \text{ bits}^1
\]

\[
= \frac{1.04 \cdot 5}{.02^2} + 30 = 13030 \text{ bits} \approx 1.6 \text{ kB}!
\]

Mergeable Sketch: Consider the case (essentially always in practice) that the items are processed on different machines.

- Given data structures (sketches) \(HLL(x_1, \ldots, x_n), HLL(y_1, \ldots, y_n) \) it is easy to merge them to give \(HLL(x_1, \ldots, x_n, y_1, \ldots, y_n) \). How?

- Set the maximum \# of trailing zeros to the maximum in the two sketches.

1. 1.04 is the constant in the HyperLogLogLog analysis. Not important!