COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 13
SUMMARY OF FIRST SECTION
• **Probability Tools:** Linearity of Expectation, Linear of Variance of Independent Variables, Concentration Bounds (incl. Markov, Chebyshev, Bernstein, Chernoff), Union Bound, Median Trick.

• **Hash Tables and Bloom Filters:** Analyzing collisions. Building 2-level hash tables. Bloom filters and false positive rates.

• **Locality Sensitive Hashing:** MinHash for Jaccard Similarity and SimHash for Cosine Similarity. Nearest Neighbor. All-Pairs Similarity Search.

• **Small Space Data Stream Algorithms:** a) distinct items, b) frequent elements, c) frequency moments (homework).

• **Johnson Lindenstrauss Lemma:** Reducing dimension of vectors via random projection such that pairwise distances are approximately preserved.
• Randomization is an important tool in working with large datasets.
• Lets us solve ‘easy’ problems that get really difficult on massive datasets. Fast/space efficient look up (hash tables and bloom filters), distinct items counting, frequent items counting, near neighbor search (LSH), etc.
• The analysis of randomized algorithms leads to complex output distributions, which we can’t compute exactly.
• We’ve covered many of the key ideas used through a small number of example applications/algorithms.
• We use concentration inequalities to bound these distributions and behaviors like accuracy, space usage, and runtime.
• Concentration inequalities and probability tools used in randomized algorithms are also fundamental in statistics, machine learning theory, probabilistic modeling of complex systems, etc.
• **Linearity of Expectation:** For any random variables X_1, \ldots, X_n and constants c_1, \ldots, c_n,

$$
\mathbb{E}[c_1 X_1 + \ldots + c_n X_n] = c_1 \mathbb{E}[X_1] + \ldots + c_n \mathbb{E}[X_n]
$$
Linearity of Expectation: For any random variables X_1, \ldots, X_n and constants c_1, \ldots, c_n,

$$\mathbb{E}[c_1 X_1 + \ldots + c_n X_n] = c_1 \mathbb{E}[X_1] + \ldots + c_n \mathbb{E}[X_n]$$

Independent Random Variables: $X_1, X_2, \ldots X_n$ are independent random variables if for any set $S \subseteq [n]$ and values a_1, a_2, \ldots, a_n

$$\Pr(X_i = a_i \text{ for all } i \in S) = \prod_{i \in S} \Pr(X_i = a_i).$$

They are k-wise independent if this holds for S with $|S| \leq k$.
• **Linearity of Expectation**: For any random variables X_1, \ldots, X_n and constants c_1, \ldots, c_n,

$$\mathbb{E}[c_1 X_1 + \ldots + c_n X_n] = c_1 \mathbb{E}[X_1] + \ldots + c_n \mathbb{E}[X_n]$$

• **Independent Random Variables**: X_1, X_2, \ldots, X_n are independent random variables if for any set $S \subset [n]$ and values a_1, a_2, \ldots, a_n

$$\Pr(X_i = a_i \text{ for all } i \in S) = \prod_{i \in S} \Pr(X_i = a_i).$$

They are **k-wise independent** if this holds for S with $|S| \leq k$.

• **Linearity of Variance**: If X_1, \ldots, X_n are independent (in fact 2-wise independent suffices) then for any constants c_1, \ldots, c_n

$$\text{Var}[c_1 X_1 + \ldots + c_n X_n] = c_1^2 \text{Var}[X_1] + \ldots + c_n^2 \text{Var}[X_n]$$
• **Union Bound**: For any events A_1, A_2, A_3, \ldots

\[
\Pr \left[\bigcup A_i \right] \leq \sum_i \Pr[A_i].
\]

• An indicator random variable X just takes the values 0 or 1:

\[
\mathbb{E}[X] = p \quad \text{Var}[X] = p(1 - p) \quad \text{where } p = \Pr[X = 1]
\]

• If $Y = X_1 + \ldots + X_n$ where each X_i are independent and $p = \Pr[X_1 = 1] = \ldots = \Pr[X_n = 1]$ then Y is a **binomial random variable**. Using linearity of expectation and variance,

\[
\mathbb{E}[X] = np \quad \text{Var}[X] = np(1 - p)
\]
Most of the analysis of hash functions that we’ve considered can be abstracted as “balls and bins” problems: we throw n balls and each ball is equally likely to land in one of m bins.

Let R_i be number of balls bin i. Then $R_i \sim \text{Bin}(n, \frac{1}{m})$ and $\mathbb{E}[R_i] = \frac{n}{m}$, $\text{Var}[R_i] = \frac{n}{m} \cdot (1 - \frac{1}{m})$. R_i and R_j not independent!

Union Bound implies $\Pr[\max(R_1, \ldots, R_m) > t] \leq \sum_i \Pr[R_i > t]$

$\Pr[\text{no collisions}] = \frac{m-1}{m} \frac{m-2}{m} \ldots \frac{m-(n-1)}{m}$

$\Pr[\text{collisions}] = \Pr[\max(R_1, \ldots, R_m) > 1] \leq 1/8$ if $m > 4n^2$

and more generally

$\Pr[\max(R_1, \ldots, R_m) \geq 2n/m] \leq m^2/n$

In the exam, you’ll be expected to do calculations like these.
• Let T be the number of bins where $R_i = 0$. We showed:

$$\mathbb{E}[T] = m(1 - 1/m)^n$$

• The probability the next k balls thrown all land in non-empty bins is

$$(1 - T/m)^k$$

and this lets us analyze the false positive rate of a Bloom filter.
• Hash function $h : U \rightarrow [n]$ is two universal if:

$$\Pr[h(x) = h(y)] \leq \frac{1}{n}.$$
• Hash function $h : U \rightarrow [n]$ is **two universal** if:

$$\Pr[h(x) = h(y)] \leq \frac{1}{n}.$$

• Hash function $h : U \rightarrow [n]$ is **k-wise independent** if $\{h(e)\}_{e \in U}$ are k-wise independent and each $h(e)$ is uniform in $[n]$.
• Hash function $h : U \to [n]$ is **two universal** if:

$$\Pr[h(x) = h(y)] \leq \frac{1}{n}.$$

• Hash function $h : U \to [n]$ is **k-wise independent** if $\{h(e)\}_{e \in U}$ are k-wise independent and each $h(e)$ is uniform in $[n]$.

• Hash function $h : U \to [n]$ is **fully independent** if $\{h(e)\}_{e \in U}$ are independent and each $h(e)$ is uniform in $[n]$.
• **Markov.** For any non-negative random variable X and $t > 0$,

$$\Pr[X \geq t] \leq \mathbb{E}[X]/t.$$
• **Markov.** For any non-negative random variable X and $t > 0$,
\[
\Pr[X \geq t] \leq \frac{\mathbb{E}[X]}{t}.
\]

• **Chebyshev.** For any random variable X and $t > 0$,
\[
\Pr[|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}[X]}{t^2}.
\]
• **Markov.** For any non-negative random variable X and $t > 0$,

$$\Pr[X \geq t] \leq \mathbb{E}[X]/t.$$

• **Chebyshev.** For any random variable X and $t > 0$,

$$\Pr[|X - \mathbb{E}[X]| \geq t] \leq \text{Var}[X]/t^2.$$

• **Chernoff.** Let X_1, \ldots, X_n be independent \(\{0, 1\}\) random variables with $\mu = \mathbb{E}[\sum_i X_i]$. Then for any $\delta > 0$,

$$\Pr[|\sum_i X_i - \mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{\delta^2 \mu}{\delta + 2} \right).$$
THREE MAIN CONCENTRATION BOUNDS

- **Markov.** For any non-negative random variable X and $t > 0$,
 \[
 \Pr[X \geq t] \leq \frac{\mathbb{E}[X]}{t}.
 \]

- **Chebyshev.** For any random variable X and $t > 0$,
 \[
 \Pr[|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}[X]}{t^2}.
 \]

- **Chernoff.** Let X_1, \ldots, X_n be independent $\{0, 1\}$ random variables with $\mu = \mathbb{E}[\sum_i X_i]$. Then for any $\delta > 0$,
 \[
 \Pr[|(\sum_i X_i) - \mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{\delta^2 \mu}{\delta + 2}\right).
 \]

- Generally, Chernoff gives better results then Chebyshev and Chebyshev gives better results than Markov. So choose bound based on how much you know about X.

• **Markov.** For any non-negative random variable X and $t > 0$,

$$\Pr[X \geq t] \leq \mathbb{E}[X]/t.$$

• **Chebyshev.** For any random variable X and $t > 0$,

$$\Pr[|X - \mathbb{E}[X]| \geq t] \leq \text{Var}[X]/t^2.$$

• **Chernoff.** Let X_1, \ldots, X_n be independent $\{0, 1\}$ random variables with $\mu = \mathbb{E}[\sum_i X_i]$. Then for any $\delta > 0$,

$$\Pr[|\sum_i X_i - \mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{\delta^2 \mu}{\delta + 2}\right).$$

• Generally, Chernoff gives better results then Chebyshev and Chebyshev gives better results than Markov. So choose bound based on how much you know about X.

• **Bernstein** generalizes Chernoff to arbitrary bounded X_i variables.
Want to learn a quantity q. Suppose you have a randomized algorithm that returns X that has expectation q and variance σ^2.

- Median Trick: Let $t = t_1 t_2$ where $t_1 = 4\sigma^2\epsilon^2 q^2$ and $t_2 = O(\log \frac{1}{\delta})$.

Let A_1 be the average of first t_1 results, let A_2 be the average of next t_1 results etc. Then,

$$\Pr[|A_i - q| \geq \epsilon q] \leq \frac{1}{4}$$

and

$$\Pr[|\text{median}(A_1, \ldots, A_{t_2}) - q| \geq \epsilon q] \leq \delta.$$
• Want to learn a quantity q. Suppose you have a randomized algorithm that returns X that has expectation q and variance σ^2.

• To get a good estimate of q, repeat algorithm t times to get X_1, \ldots, X_t and let $A = (X_1 + \ldots + X_t)/t$. Then, if $t = \frac{\sigma^2}{\delta\varepsilon^2 q^2}$

\[
\Pr[|A - q| \geq \varepsilon q] \leq \frac{\text{Var}[A]}{\varepsilon^2 q^2}
\]
• Want to learn a quantity q. Suppose you have a randomized algorithm that returns X that has expectation q and variance σ^2.

• To get a good estimate of q, repeat algorithm t times to get X_1, \ldots, X_t and let $A = (X_1 + \ldots + X_t)/t$. Then, if $t = \frac{\sigma^2}{\delta \epsilon^2 q^2}$

$$\Pr[|A - q| \geq \epsilon q] \leq \frac{\text{Var}[A]}{\epsilon^2 q^2} = \frac{\sigma^2}{\epsilon^2 q^2}$$
• Want to learn a quantity q. Suppose you have a randomized algorithm that returns X that has expectation q and variance σ^2.

• To get a good estimate of q, repeat algorithm t times to get X_1, \ldots, X_t and let $A = (X_1 + \ldots + X_t)/t$. Then, if $t = \frac{\sigma^2}{\delta \epsilon^2 q^2}$

$$\Pr[|A - q| \geq \epsilon q] \leq \frac{\text{Var}[A]}{\epsilon^2 q^2} = \frac{\sigma^2}{\epsilon^2 q^2} = \delta$$
AVERAGING AND THE MEDIAN TRICK

- Want to learn a quantity q. Suppose you have a randomized algorithm that returns X that has expectation q and variance σ^2.
- To get a good estimate of q, repeat algorithm t times to get X_1, \ldots, X_t and let $A = (X_1 + \ldots + X_t)/t$. Then, if $t = \frac{\sigma^2}{\delta \epsilon^2 q^2}$

$$
\Pr[|A - q| \geq \epsilon q] \leq \frac{\text{Var}[A]}{\epsilon^2 q^2} = \frac{\sigma^2}{t \epsilon^2 q^2} = \delta
$$

- Median Trick: Let $t = t_1 t_2$ where $t_1 = \frac{4\sigma^2}{\epsilon^2 q^2}$ and $t_2 = O(\log \frac{1}{\delta})$. Let A_1 be average of first t_1 results, let A_2 be average of next t_1 results etc. Then,

$$
\Pr[|A_i - q| \geq \epsilon q] \leq 1/4
$$

and $\Pr[|\text{median}(A_1, \ldots, A_{t_2}) - q| \geq \epsilon q] \leq \delta$. 10
2-level hash tables vs. bloom filter

• Input to both is a set of items S and both support queries of the form “Is $x \in S$?” in constant time.
• Input to both is a set of items S and both support queries of the form “Is $x \in S$?” in constant time.

• **2-Level Hash Table:**
 • Space is $O(|S|) \times \text{“space required to store an element of } S\text{”}$
2-LEVEL HASH TABLES VS. BLOOM FILTER

- Input to both is a set of items S and both support queries of the form “Is $x \in S$?” in constant time.
- 2-Level Hash Table:
 - Space is $O(|S|) \times \text{“space required to store an element of } S\text{”}$
- Bloom Filter:
 - Does not actually store the items in S, just a binary array from which we make various deductions.
 - Uses only $O(|S|)$ space but at the cost of sometimes answering “yes” when answer should be “no” (a false positive)
 - If the Bloom Filter array is length m, false positive probability is roughly $(1 - e^{-k|S|/m})^k$ where k is the number of hash functions used. Picking $k = \ln 2 \cdot m / |S|$ gives probability $1 / 2^{(\ln 2)^m / |S|}$
• Input to both is a set of items S and both support queries of the form “Is $x \in S$?” in constant time.

• **2-Level Hash Table:**
 • Space is $O(|S|) \times \text{“space required to store an element of } S\text{”}$

• **Bloom Filter:**
 • Does not actually store the items in S, just a binary array from which we make various deductions.
Input to both is a set of items S and both support queries of the form “Is $x \in S$?" in constant time.

2-Level Hash Table:
- Space is $O(|S|) \times \text{"space required to store an element of } S\text{"}$

Bloom Filter:
- Does not actually store the items in S, just a binary array from which we make various deductions.
- Uses only $O(|S|)$ space but at the cost of sometimes answering “yes” when answer should be “no” (a false positive)
2-LEVEL HASH TABLES VS. BLOOM FILTER

• Input to both is a set of items S and both support queries of the form “Is $x \in S$?” in constant time.

• 2-Level Hash Table:
 • Space is $O(|S|) \times \text{“space required to store an element of } S\text”$

• Bloom Filter:
 • Does not actually store the items in S, just a binary array from which we make various deductions.
 • Uses only $O(|S|)$ space but at the cost of sometimes answering “yes” when answer should be “no” (a false positive)
 • If the Bloom Filter array is length m, false positive probability is roughly $(1 - e^{-k|S|/m})^k$ where k is the number of hash functions used. Picking $k = \ln 2 \cdot m/|S|$ gives probability $1/2^{(\ln 2)m/|S|}$
• Designed a hash function for hashing sets such that for sets A and B, $\Pr[MH(A) = MH(B)] = J(A, B) = \frac{|A \cap B|}{|A \cup B|}$.

$$MH(A) = \min_{x \in A} h(x)$$

where $h : U \rightarrow [0, 1]$ is fully independent

LOCALITY SENSITIVE HASHING

- Designed a hash function for hashing sets such that for sets A and B, $\Pr[MH(A) = MH(B)] = J(A, B) = \frac{|A \cap B|}{|A \cup B|}$.

 $$MH(A) = \min_{x \in A} h(x) \text{ where } h : U \to [0, 1] \text{ is fully independent}$$

- Can form signature of set A using r independent hash functions:

 $$\text{signature}(A) = (MH_1(A), \ldots, MH_r(A))$$

 Note $\Pr[\text{signature}(A) = \text{signature}(B)] = J(A, B)^r$.
• Designed a hash function for hashing sets such that for sets A and B, $\Pr[\text{MH}(A) = \text{MH}(B)] = J(A, B) = \frac{|A \cap B|}{|A \cup B|}$.

$$
\text{MH}(A) = \min_{x \in A} h(x) \quad \text{where} \quad h : U \rightarrow [0, 1] \text{ is fully independent}
$$

• Can form signature of set A using r independent hash functions:

$$
\text{signature}(A) = (\text{MH}_1(A), \ldots, \text{MH}_r(A))
$$

Note $\Pr[\text{signature}(A) = \text{signature}(B)] = J(A, B)^r$.

• Given rt independent hash functions, we can form t signatures $\text{signature}_1(A), \ldots, \text{signature}_t(A)$. Then if $s = J(A, B)$,

$$
\Pr[\text{signature}_i(A) = \text{signature}_i(B) \text{ for some } i] = 1 - (1 - s^r)^t.
$$
• Designed a hash function for hashing sets such that for sets A and B, \(\Pr[MH(A) = MH(B)] = J(A, B) = \frac{|A \cap B|}{|A \cup B|} \).

\[
MH(A) = \min_{x \in A} h(x) \quad \text{where} \quad h : U \rightarrow [0, 1]
\]
is fully independent.

• Can form signature of set A using r independent hash functions:

\[
\text{signature}(A) = (MH_1(A), \ldots, MH_r(A))
\]

Note \(\Pr[\text{signature}(A) = \text{signature}(B)] = J(A, B)^r \).

• Given rt independent hash functions, we can form t signatures $\text{signature}_1(A), \ldots, \text{signature}_t(A)$. Then if $s = J(A, B)$,

\[
\Pr[\text{signature}_i(A) = \text{signature}_i(B) \text{ for some } i] = 1 - (1 - s^r)^t
\]

• To find all pairs of similar sets amongst A_1, A_2, A_3, \ldots only compare a pair if there exists i, their ith signatures match.
• We want to compute something about the stream x_1, x_2, \ldots, x_m with only one pass over the stream and limited space.

• Let f_i be the number of values in stream that equal i.
 • Distinct Items: Can estimate $D = |\{i : f_i > 0\}|$ up to a factor $1 + \epsilon$ with probability $1 - \delta$ in $O(\epsilon^{-2} \log 1/\delta)$ space.
 • Frequently Elements Items: Can return a set S such that:

 $$f_i \geq m/k \text{ implies } i \in S \quad \text{and} \quad i \in S \text{ implies } f_i \geq m(1 - \epsilon)/k$$

 with probability $1 - \delta$ in $O(k/\epsilon \cdot \log 1/\delta)$ space.
 • Sum of Squares: Can estimate $\sum f_i^2$ up to a factor $1 + \epsilon$ with probability $1 - \delta$ in $O(\epsilon^{-2} \log 1/\delta)$ space.
Count-Min Sketch: A random hashing based method closely related to bloom filters.

Claim: $A[h(x)] \geq f(x)$.

Claim: $A[h(x)] \leq f(x) + \frac{2n}{m}$ with probability at least $\frac{1}{2}$.

How can we increase this probability to $1 - \delta$ for arbitrary $\delta > 0$?
Count-Min Sketch: A random hashing based method closely related to bloom filters.

\[A[h(x)] \] to estimate \(f(x) \), the frequency of \(x \) in the stream.

- Claim: \(A[h(x)] \geq f(x) \).
- Claim: \(A[h(x)] \leq f(x) + 2 \frac{n}{m} \) with probability at least \(\frac{1}{2} \).

How can we increase this probability to \(1 - \delta \) for arbitrary \(\delta > 0 \)?
Count-Min Sketch: A random hashing based method closely related to bloom filters.

- Claim: $A[h(x)] \geq f(x)$.
- Claim: $A[h(x)] \leq f(x) + \frac{2n}{m}$ with probability at least $\frac{1}{2}$.

How can we increase this probability to $1 - \delta$ for arbitrary $\delta > 0$?
Count-Min Sketch: A random hashing based method closely related to bloom filters.

- Claim: $A[h(x)] \ge f(x)$.
- Claim: $A[h(x)] \le f(x) + 2n/m$ with probability at least $1/2$.

How can we increase this probability to $1 - \delta$ for arbitrary $\delta > 0$?
Count-Min Sketch: A random hashing based method closely related to bloom filters.

- Claim: $A[h(x)] \geq f(x)$.
- Claim: $A[h(x)] \leq f(x) + \frac{2n}{m}$ with probability at least $\frac{1}{2}$.

How can we increase this probability to $1 - \delta$ for arbitrary $\delta > 0$?
Count-Min Sketch: A random hashing based method closely related to bloom filters.

- Claim: $A[h(x)] \geq f(x)$.
- Claim: $A[h(x)] \leq f(x) + 2\frac{n}{m}$ with probability at least $\frac{1}{2}$.

How can we increase this probability to $1 - \delta$ for arbitrary $\delta > 0$?
Count-Min Sketch: A random hashing based method closely related to bloom filters.

\[A[h(x)] \] to estimate \(f(x) \), the frequency of \(x \) in the stream.

- **Claim:** \(A[h(x)] \geq f(x) \).
- **Claim:** \(A[h(x)] \leq f(x) + 2 \frac{n}{m} \) with probability at least \(\frac{1}{2} \).

How can we increase this probability to \(1 - \delta \) for arbitrary \(\delta > 0 \)?
Count-Min Sketch: A random hashing based method closely related to bloom filters.

Use $A[h(x)]$ to estimate $f(x)$, the frequency of x in the stream.

- **Claim:** $A[h(x)] \geq f(x)$.
- **Claim:** $A[h(x)] \leq f(x) + 2n/m$ with probability at least $1/2$.
Count-Min Sketch: A random hashing based method closely related to bloom filters.

Use $A[h(x)]$ to estimate $f(x)$, the frequency of x in the stream.

- **Claim:** $A[h(x)] \geq f(x)$.
- **Claim:** $A[h(x)] \leq f(x) + 2n/m$ with probability at least $1/2$.

How can we increase this probability to $1 - \delta$ for arbitrary $\delta > 0$?
Estimate \(f(x) \) with \(\tilde{f}(x) = \min_{i \in \mathbb{A}} A_i[h_i(x)] \).

Then \(\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + \frac{2}{m}] \geq 1 - \frac{1}{2^t} \).

Setting \(t = \log(\frac{1}{\delta}) \) ensures probability is at least \(1 - \delta \).

Setting \(m = 2^k/\epsilon \) ensures \(\frac{2}{m} = \epsilon/n/k \) and that's enough to determine whether we need to output the element.
Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$.

Then $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + 2n/m] \geq 1 - 1/2^t$.

Setting $t = \log(1/\delta)$ ensures probability is at least $1 - \delta$.

Setting $m = 2^k/\epsilon$ ensures $2n/m = \epsilon n/k$ and that's enough to determine whether we need to output the element.
COUNT-MIN SKETCH ACCURACY

- Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$.

- Then $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + \frac{2n}{m}] \geq 1 - \frac{1}{2^t}$.

- Setting $t = \log(\frac{1}{\delta})$ ensures probability is at least $1 - \delta$.

- Setting $m = 2^k / \epsilon$ ensures $\frac{2n}{m} = \epsilon \frac{n}{k}$ and that's enough to determine whether we need to output the element.
Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$.

Then $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + \frac{2n}{m}] \geq 1 - \frac{1}{2^t}$.

Setting $t = \log(\frac{1}{\delta})$ ensures probability is at least $1 - \delta$.

Setting $m = 2^k/\epsilon$ ensures $\frac{2n}{m} = \frac{\epsilon n}{k}$ and that's enough to determine whether we need to output the element.
Count-Min Sketch Accuracy

Estimate \(f(x) \) with \(\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)] \).

Then \(\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + 2n/m] \geq 1 - \frac{1}{2^t} \).

Setting \(t = \log(1/\delta) \) ensures probability is at least \(1 - \delta \).

Setting \(m = 2^k/\epsilon \) ensures \(2n/m = \epsilon n/k \) and that's enough to determine whether we need to output the element.
Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$.

Then $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + 2n/m] \geq 1 - 1/2t$.

Setting $t = \log(1/\delta)$ ensures probability is at least $1 - \delta$.

Setting $m = 2^{k}/\epsilon$ ensures $2n/m = \epsilon n/k$ and that's enough to determine whether we need to output the element.
• Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$.

Count-Min Sketch Accuracy

![Diagram showing count-min sketch accuracy](image_url)
Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$. Then $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + 2n/m] \geq 1 - 1/2^t$.

Setting $t = \log(1/\delta)$ ensures probability is at least $1 - \delta$.

Setting $m = 2^k/\epsilon$ ensures $2n/m = \epsilon n/k$ and that's enough to determine whether we need to output the element.
Count-Min Sketch Accuracy

- Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$.
- Then $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + 2n/m] \geq 1 - 1/2^t$.
COUNT-MIN SKETCH ACCURACY

- Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$.
- Then $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + 2n/m] \geq 1 - 1/2^t$.
- Setting $t = \log(1/\delta)$ ensures probability is at least $1 - \delta$.

![Diagram](https://via.placeholder.com/150)
Count-Min Sketch Accuracy

- Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$.
- Then $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + 2n/m] \geq 1 - 1/2^t$.
- Setting $t = \log(1/\delta)$ ensures probability is at least $1 - \delta$.
- Setting $m = 2k/\epsilon$ ensures $2n/m = \epsilon n/k$ and that’s enough to determine whether we need to output the element.
Johnson Lindenstrauss Lemma: If $M \in \mathbb{R}^{m \times d}$ is a random matrix with $m = O\left(\epsilon^{-2}\log n\right)$, for $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \leq \|M\vec{x}_i - M\vec{x}_j\|_2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2$$

where $\|\vec{z}\|_2^2$ is the sum of squared entries of \vec{z}.
JOHNSON-LINDENSTRAUSS

Johnson Lindenstrauss Lemma: If $M \in \mathbb{R}^{m \times d}$ is a random matrix with $m = O\left(\epsilon^{-2}\log n\right)$, for $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \leq \|M\vec{x}_i - M\vec{x}_j\|_2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2$$

where $\|\vec{z}\|_2^2$ is the sum of squared entries of \vec{z}.

Proof Idea:
Johnson Lindenstrauss Lemma: If $M \in \mathbb{R}^{m \times d}$ is a random matrix with $m = O\left(\epsilon^{-2}\log n\right)$, for $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \leq \|M\vec{x}_i - M\vec{x}_j\|_2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2$$

where $\|\vec{z}\|_2^2$ is the sum of squared entries of \vec{z}.

Proof Idea:

• Follows from Distributional JL: If $M \in \mathbb{R}^{m \times d}$ has $N(0, 1/m)$ entries where $m = O(\epsilon^{-2} \log(1/\delta))$ then for any $\vec{y} \in \mathbb{R}^d$, $\|M\vec{y}\|_2 \approx \|\vec{y}\|_2$ with probability at least $1 - \delta$.
Johnson Lindenstrauss Lemma: If $M \in \mathbb{R}^{m \times d}$ is a random matrix with $m = O\left(\epsilon^{-2}\log n\right)$, for $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \leq \|M\vec{x}_i - M\vec{x}_j\|_2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2$$

where $\|\vec{z}\|_2^2$ is the sum of squared entries of \vec{z}.

Proof Idea:

• Follows from Distributional JL: If $M \in \mathbb{R}^{m \times d}$ has $\mathcal{N}(0, 1/m)$ entries where $m = O(\epsilon^{-2}\log(1/\delta))$ then for any $\vec{y} \in \mathbb{R}^d$,

$\|M\vec{y}\|_2 \approx \|\vec{y}\|_2$ with probability at least $1 - \delta$.

• To prove Distributional JL Lemma:
Johnson Lindenstrauss Lemma: If $M \in \mathbb{R}^{m \times d}$ is a random matrix with $m = O\left(\epsilon^{-2}\log n\right)$, for $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \leq \|M\vec{x}_i - M\vec{x}_j\|_2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2$$

where $\|\vec{z}\|_2^2$ is the sum of squared entries of \vec{z}.

Proof Idea:

• Follows from Distributional JL: If $M \in \mathbb{R}^{m \times d}$ has $N(0, 1/m)$ entries where $m = O(\epsilon^{-2} \log(1/\delta))$ then for any $\vec{y} \in \mathbb{R}^d$,

$\|M\vec{y}\|_2 \approx \|\vec{y}\|_2$ with probability at least $1 - \delta$.

• To prove Distributional JL Lemma:
 • By linearity of expectation and variance, $\mathbb{E}[\|M\vec{y}\|_2^2] = \|\vec{y}\|_2^2$.
Johnson Lindenstrauss Lemma: If $M \in \mathbb{R}^{m \times d}$ is a random matrix with $m = O\left(\epsilon^{-2}\log n\right)$, for $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \leq \|M\vec{x}_i - M\vec{x}_j\|_2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2$$

where $\|\vec{z}\|_2^2$ is the sum of squared entries of \vec{z}.

Proof Idea:

- Follows from Distributional JL: If $M \in \mathbb{R}^{m \times d}$ has $\mathcal{N}(0, 1/m)$ entries where $m = O(\epsilon^{-2}\log(1/\delta))$ then for any $\vec{y} \in \mathbb{R}^d$,
 $\|M\vec{y}\|_2 \approx \|\vec{y}\|_2$ with probability at least $1 - \delta$.

- To prove Distributional JL Lemma:
 - By linearity of expectation and variance, $\mathbb{E}[\|M\vec{y}\|_2^2] = \|\vec{y}\|_2^2$.
 - $\|M\vec{y}\|_2^2$ is the sum of m squared independent normal distributions and is tightly concentrated around the expectation.