Last Class: Fast computation of the SVD/eigendecomposition.

- Power method for computing the top singular vector of a matrix.
- Power method is a simple iterative algorithm for solving the non-convex optimization problem $\max_{\vec{v} : \|\vec{v}\|_2 = 1} |\vec{v}^T A \vec{v}|$

Final Two Weeks of Class:

- More general iterative algorithms for optimization, specifically gradient descent and its variants.
- What are these methods, when are they applied, and how do you analyze their performance?
- Small taste of what you can find in COMPSCI 590OP or 690OP.
Discrete (Combinatorial) Optimization: (traditional CS algorithms)

- Graph Problems: min-cut, max-cut, max flow, shortest path, matchings, maximum independent set, traveling salesman problem
- Problems with discrete constraints or outputs: bin-packing, scheduling, sequence alignment, submodular maximization
- Generally searching over a finite but exponentially large set of possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

- Unconstrained convex and non-convex optimization.
- Linear programming, quadratic programming, semidefinite programming
CONTINUOUS OPTIMIZATION EXAMPLES
Given some function $f : \mathbb{R}^d \rightarrow \mathbb{R}$, find $\vec{\theta}_\star$ with:

$$f(\vec{\theta}_\star) = \min_{\vec{\theta} \in \mathbb{R}^d} f(\vec{\theta})$$
Mathematical Setup

Given some function $f : \mathbb{R}^d \rightarrow \mathbb{R}$, find θ_\star with:

$$f(\theta_\star) = \min_{\tilde{\theta} \in \mathbb{R}^d} f(\tilde{\theta}) + \epsilon$$

Typically up to some small approximation factor.
MATHEMATICAL SETUP

Given some function $f : \mathbb{R}^d \rightarrow \mathbb{R}$, find $\hat{\theta}_*$ with:

$$f(\hat{\theta}_*) = \min_{\hat{\theta} \in \mathbb{R}^d} f(\hat{\theta}) + \epsilon$$

Typically up to some small approximation factor.

Often under some constraints:

- $\|\hat{\theta}\|_2 \leq 1$, $\|\hat{\theta}\|_1 \leq 1$.
- $A\hat{\theta} \leq \bar{b}$, $\hat{\theta}^T A\hat{\theta} \geq 0$.
- $\sum_{i=1}^d \hat{\theta}(i) \leq c$.
Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

- Have a **model**, which is a function mapping inputs to predictions (neural network, linear function, low-degree polynomial etc).
- The model is parameterized by a **parameter vector** (weights in a neural network, coefficients in a linear function or polynomial).
- Want to **train** this model on input data, by picking a parameter vector such that the model does a good job mapping inputs to predictions on your training data.

This training step is typically formulated as a continuous optimization problem.
Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood...)

$\textbf{Model:}$

$\vec{\theta} : \mathbb{R}^d \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) = \vec{\theta}(1) \cdot \vec{x}(1) + ... + \vec{\theta}(d) \cdot \vec{x}(d)$.

$\textbf{Parameter Vector:}$

$\vec{\theta} \in \mathbb{R}^d$ (the regression coefficients)

$\textbf{Optimization Problem:}$

Given data points (training points) $\vec{x}_1, ..., \vec{x}_n$ (the rows of data matrix $X \in \mathbb{R}^{n \times d}$) and labels $y_1, ..., y_n \in \mathbb{R}$, find $\vec{\theta}^*$ minimizing the loss function:

$L_{X, y}(\vec{\theta}) = L(\vec{\theta}, X, \vec{y}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)$

where ℓ is some measurement of how far $M_{\vec{\theta}}(\vec{x}_i)$ is from y_i.

- $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = (M_{\vec{\theta}}(\vec{x}_i) - y_i)^2$ (least squares regression)
- $y_i \in \{-1, 1\}$ and $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = \ln(1 + \exp(-y_i M_{\vec{\theta}}(\vec{x}_i)))$ (logistic regression)
Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood . . .)

Model: $M_{\vec{\theta}} : \mathbb{R}^d \to \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \overset{\text{def}}{=} \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d)$.
Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood...)

Model: $M_{\vec{\theta}} : \mathbb{R}^d \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \overset{\text{def}}{=} \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d)$.
Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood...)

Model: $M_{\vec{\theta}} : \mathbb{R}^d \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \overset{\text{def}}{=} \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d)$.

Parameter Vector: $\vec{\theta} \in \mathbb{R}^d$ (the regression coefficients)
Example 1: Linear Regression, e.g., predicting house prices based on \(d\) features (sq. footage, average price of houses in neighborhood . . .)

Model: \(M_{\vec{\theta}} : \mathbb{R}^d \rightarrow \mathbb{R}\) with \(M_{\vec{\theta}}(\vec{x}) \overset{\text{def}}{=} \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d)\).

Parameter Vector: \(\vec{\theta} \in \mathbb{R}^d\) (the regression coefficients)

Optimization Problem: Given data points (training points) \(\vec{x}_1, \ldots, \vec{x}_n\) (the rows of data matrix \(X \in \mathbb{R}^{n \times d}\)) and labels \(y_1, \ldots, y_n \in \mathbb{R}\), find \(\vec{\theta}_*\) minimizing the loss function:

\[
L(\vec{\theta}, X, \vec{y}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)
\]

where \(\ell\) is some measurement of how far \(M_{\vec{\theta}}(\vec{x}_i)\) is from \(y_i\).
Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood . . .)

Model: $M_{\vec{\theta}} : \mathbb{R}^d \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \overset{\text{def}}{=} \theta(1) \cdot \vec{x}(1) + \ldots + \theta(d) \cdot \vec{x}(d)$.

Parameter Vector: $\vec{\theta} \in \mathbb{R}^d$ (the regression coefficients)

Optimization Problem: Given data points (training points) $\vec{x}_1, \ldots, \vec{x}_n$ (the rows of data matrix $X \in \mathbb{R}^{n \times d}$) and labels $y_1, \ldots, y_n \in \mathbb{R}$, find $\vec{\theta}_*$ minimizing the loss function:

$$L(\vec{\theta}, X, \vec{y}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)$$

where ℓ is some measurement of how far $M_{\vec{\theta}}(\vec{x}_i)$ is from y_i.

- $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = (M_{\vec{\theta}}(\vec{x}_i) - y_i)^2$ (least squares regression)
- $y_i \in \{-1, 1\}$ and $\ell(M_{\vec{\theta}}(\vec{x}_i), y_i) = \ln (1 + \exp(-y_i M_{\vec{\theta}}(\vec{x}_i)))$ (logistic regression)
Example 1: Linear Regression, e.g., predicting house prices based on \(d \) features (sq. footage, average price of houses in neighborhood...)

Model: \(M_\theta : \mathbb{R}^d \rightarrow \mathbb{R} \) with \(M_\theta(\vec{x}) \overset{\text{def}}{=} \vec{\theta}(1) \cdot \vec{x}(1) + \ldots + \vec{\theta}(d) \cdot \vec{x}(d) \).

Parameter Vector: \(\vec{\theta} \in \mathbb{R}^d \) (the regression coefficients)

Optimization Problem: Given data points (training points) \(\vec{x}_1, \ldots, \vec{x}_n \) (the rows of data matrix \(X \in \mathbb{R}^{n \times d} \)) and labels \(y_1, \ldots, y_n \in \mathbb{R} \), find \(\vec{\theta}_* \) minimizing the loss function:

\[
L_{\vec{x}, y}(\vec{\theta}) = L(\vec{\theta}, X, \vec{y}) = \sum_{i=1}^{n} \ell(M_\theta(\vec{x}_i), y_i)
\]

where \(\ell \) is some measurement of how far \(M_\theta(\vec{x}_i) \) is from \(y_i \).

- \(\ell(M_\theta(\vec{x}_i), y_i) = (M_\theta(\vec{x}_i) - y_i)^2 \) (least squares regression)
- \(y_i \in \{-1, 1\} \) and \(\ell(M_\theta(\vec{x}_i), y_i) = \ln \left(1 + \exp(-y_i M_\theta(\vec{x}_i))\right) \) (logistic regression)
Example 2: Neural Networks

Model: $M_{\vec{\theta}} : \mathbb{R}^d \rightarrow \mathbb{R}$. $M_{\vec{\theta}}(\vec{x}) = \langle \vec{w}_{\text{out}}, \sigma(\mathbf{W}_2 \sigma(\mathbf{W}_1 \vec{x})) \rangle$.

Parameter Vector: $\vec{\theta} \in \mathbb{R}^{(# \text{ edges})}$ (the weights on every edge)

Optimization Problem: Given data points $\vec{x}_1, \ldots, \vec{x}_n$ and labels $z_1, \ldots, z_n \in \mathbb{R}$, find $\vec{\theta}_*$ minimizing the loss function:

$$L_{\vec{x}, \vec{y}}(\vec{\theta}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), z_i)$$
Optimization in ML

\[
L_{X,y}(\theta) = \sum_{i=1}^{n} \ell(M_{\theta}(x_i), y_i)
\]

- **Supervised** means we have labels \(y_1, \ldots, y_n \) for the training points.
- Solving the final optimization problem has many different names: likelihood maximization, empirical risk minimization, minimizing training loss, etc.
- Continuous optimization is also very common in unsupervised learning. (PCA, spectral clustering, etc.)
- **Generalization** tries to explain why minimizing the loss \(L_{X,y}(\theta) \) on the *training points* minimizes the loss on future *test points*. I.e., makes us have good predictions on future inputs.
Choice of optimization algorithm for minimizing $f(\vec{\theta})$ will depend on many things:

- The form of f (in ML, depends on the model & loss function).
- Any constraints on $\vec{\theta}$ (e.g., $\|\vec{\theta}\| < c$).
- Computational constraints, such as memory constraints.

$$L_{x,y}(\vec{\theta}) = \sum_{i=1}^{n} \ell(M_{\vec{\theta}}(\vec{x}_i), y_i)$$
Next few classes: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be applied to almost any continuous function we care about optimizing.
- Often not the ‘best’ choice for any given function, but it is the approach of choice in ML since it is simple, general, and often works very well.
- At each step, tries to move towards the lowest nearby point in the function that is can – in the opposite direction of the gradient.
Let $\vec{e}_i \in \mathbb{R}^d$ denote the i^{th} standard basis vector,

$$\vec{e}_i = [0, 0, 1, 0, 0, \ldots, 0] \quad \text{1 at position } i$$
Let $\vec{e}_i \in \mathbb{R}^d$ denote the i^{th} standard basis vector,

$$
\vec{e}_i = [0, 0, 1, 0, 0, \ldots, 0] \quad \text{1 at position } i
$$

Partial Derivative:

$$
\frac{\partial f}{\partial \vec{\theta}(i)} = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \cdot \vec{e}_i) - f(\vec{\theta})}{\epsilon}.
$$
Let $\vec{e}_i \in \mathbb{R}^d$ denote the i^{th} standard basis vector,

$$
\vec{e}_i = [0, 0, 1, 0, 0, \ldots, 0]_i
$$

1 at position i

Partial Derivative:

$$
\frac{\partial f}{\partial \vec{\theta}(i)} = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \cdot \vec{e}_i) - f(\vec{\theta})}{\epsilon}.
$$

Directional Derivative:

$$
D_{\vec{v}} f(\vec{\theta}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta} + \epsilon \vec{v}) - f(\vec{\theta})}{\epsilon}.
$$
Gradient: Just a ‘list’ of the partial derivatives.

\[
\begin{bmatrix}
\frac{\partial f}{\partial \theta(1)} \\
\frac{\partial f}{\partial \theta(2)} \\
\vdots \\
\frac{\partial f}{\partial \theta(d)}
\end{bmatrix}
\]
Gradient: Just a ‘list’ of the partial derivatives.

\[
\vec{\nabla} f(\vec{\theta}) = \begin{bmatrix}
\frac{\partial f}{\partial \theta(1)} \\
\frac{\partial f}{\partial \theta(2)} \\
\vdots \\
\frac{\partial f}{\partial \theta(d)}
\end{bmatrix}
\]

Directional Derivative in Terms of the Gradient:

\[
D_{\vec{v}} f(\vec{\theta}) = \langle \vec{v}, \vec{\nabla} f(\vec{\theta}) \rangle.
\]
Often the functions we are trying to optimize are very complex (e.g., a neural network). We will assume access to:

Function Evaluation: Can compute $f(\theta)$ for any θ.

Gradient Evaluation: Can compute $\nabla f(\theta)$ for any θ.

In neural networks:
- Function evaluation is called a forward pass (propogate an input through the network).
- Gradient evaluation is called a backward pass (compute the gradient via chain rule, using backpropagation).
Often the functions we are trying to optimize are very complex (e.g., a neural network). We will assume access to:

Function Evaluation: Can compute $f(\vec{\theta})$ for any $\vec{\theta}$.

Gradient Evaluation: Can compute $\nabla f(\vec{\theta})$ for any $\vec{\theta}$.

In neural networks:

- Function evaluation is called a **forward pass** (propogate an input through the network).
- Gradient evaluation is called a **backward pass** (compute the gradient via chain rule, using backpropagation).
Gradient descent is a greedy iterative optimization algorithm: Starting at $\theta(0)$, in each iteration let $\theta(i) = \theta(i-1) + \eta v$, where η is a (small) ‘step size’ and v is a direction chosen to minimize $f(\theta(i-1) + \eta v)$.

$D_v f(\theta) = \lim_{\epsilon \to 0} f(\theta + \epsilon v) - f(\theta) \epsilon$.

So for small η:

$f(\theta(i)) - f(\theta(i-1)) \approx \eta \cdot D_v f(\theta(i-1)) = \eta \cdot \langle v, \nabla f(\theta(i-1)) \rangle$.

We want to choose v minimizing $\langle v, \nabla f(\theta(i-1)) \rangle$ – i.e., pointing in the direction of $\nabla f(\theta(i-1))$ but with the opposite sign.
Gradient descent is a greedy iterative optimization algorithm: Starting at $\theta^{(0)}$, in each iteration let $\theta^{(i)} = \theta^{(i-1)} + \eta \vec{v}$, where η is a (small) ‘step size’ and \vec{v} is a direction chosen to minimize $f(\theta^{(i-1)} + \eta \vec{v})$.

$$D_{\vec{v}} f(\theta) = \lim_{\epsilon \to 0} \frac{f(\theta + \epsilon \vec{v}) - f(\theta)}{\epsilon}.$$
Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} + \eta \vec{v}$, where η is a (small) ‘step size’ and \vec{v} is a direction chosen to minimize $f(\vec{\theta}^{(i-1)} + \eta \vec{v})$.

$$D_{\vec{v}} f(\vec{\theta}^{(i-1)}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta}^{(i-1)} + \epsilon \vec{v}) - f(\vec{\theta}^{(i-1)})}{\epsilon}.$$
Gradient descent is a greedy iterative optimization algorithm: Starting at $\theta^{(0)}$, in each iteration let $\theta^{(i)} = \theta^{(i-1)} + \eta \vec{v}$, where η is a (small) ‘step size’ and \vec{v} is a direction chosen to minimize $f(\theta^{(i-1)} + \eta \vec{v})$.

$$D_{\vec{v}} f(\theta^{(i-1)}) = \lim_{\epsilon \to 0} \frac{f(\theta^{(i-1)} + \epsilon \vec{v}) - f(\theta^{(i-1)})}{\epsilon}.$$

So for small η:

$$f(\theta^{(i)}) - f(\theta^{(i-1)}) = f(\theta^{(i-1)} + \eta \vec{v}) - f(\theta^{(i-1)})$$
Gradient descent is a greedy iterative optimization algorithm: Starting at $\vec{\theta}^{(0)}$, in each iteration let $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} + \eta \vec{v}$, where η is a (small) ‘step size’ and \vec{v} is a direction chosen to minimize $f(\vec{\theta}^{(i-1)} + \eta \vec{v})$.

$$D_{\vec{v}} f(\vec{\theta}^{(i-1)}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta}^{(i-1)} + \epsilon \vec{v}) - f(\vec{\theta}^{(i-1)})}{\epsilon}.$$

So for small η:

$$f(\vec{\theta}^{(i)}) - f(\vec{\theta}^{(i-1)}) = f(\vec{\theta}^{(i-1)} + \eta \vec{v}) - f(\vec{\theta}^{(i-1)}) \approx \eta \cdot D_{\vec{v}} f(\vec{\theta}^{(i-1)})$$
Gradient descent is a **greedy** iterative optimization algorithm: Starting at \(\vec{\theta}^{(0)} \), in each iteration let \(\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} + \eta \vec{v} \), where \(\eta \) is a (small) ‘step size’ and \(\vec{v} \) is a direction chosen to minimize \(f(\vec{\theta}^{(i-1)} + \eta \vec{v}) \).

\[
D_{\vec{v}} f(\vec{\theta}^{(i-1)}) = \lim_{\varepsilon \to 0} \frac{f(\vec{\theta}^{(i-1)} + \varepsilon \vec{v}) - f(\vec{\theta}^{(i-1)})}{\varepsilon}.
\]

So for small \(\eta \):

\[
f(\vec{\theta}^{(i)}) - f(\vec{\theta}^{(i-1)}) = f(\vec{\theta}^{(i-1)} + \eta \vec{v}) - f(\vec{\theta}^{(i-1)}) \approx \eta \cdot D_{\vec{v}} f(\vec{\theta}^{(i-1)}) \\
= \eta \cdot \langle \vec{v}, \nabla f(\vec{\theta}^{(i-1)}) \rangle.
\]
Gradient descent is a greedy iterative optimization algorithm: Starting at \(\vec{\theta}^{(0)} \), in each iteration let \(\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} + \eta \vec{v} \), where \(\eta \) is a (small) ‘step size’ and \(\vec{v} \) is a direction chosen to minimize \(f(\vec{\theta}^{(i-1)} + \eta \vec{v}) \).

\[
D_{\vec{v}} f(\vec{\theta}^{(i-1)}) = \lim_{\epsilon \to 0} \frac{f(\vec{\theta}^{(i-1)} + \epsilon \vec{v}) - f(\vec{\theta}^{(i-1)})}{\epsilon}.
\]

So for small \(\eta \):

\[
f(\vec{\theta}^{(i)}) - f(\vec{\theta}^{(i-1)}) = f(\vec{\theta}^{(i-1)} + \eta \vec{v}) - f(\vec{\theta}^{(i-1)}) \approx \eta \cdot D_{\vec{v}} f(\vec{\theta}^{(i-1)})
= \eta \cdot \langle \vec{v}, \nabla f(\vec{\theta}^{(i-1)}) \rangle.
\]

We want to choose \(\vec{v} \) minimizing \(\langle \vec{v}, \nabla f(\vec{\theta}^{(i-1)}) \rangle \) – i.e., pointing in the direction of \(\nabla f(\vec{\theta}^{(i-1)}) \) but with the opposite sign.
Gradient Descent

- Choose some initialization $\vec{\theta}(0)$.
- For $i = 1, \ldots, t$
 - $\vec{\theta}(i) = \vec{\theta}(i-1) - \eta \nabla f(\vec{\theta}(i-1))$
- Return $\vec{\theta}(t)$, as an approximate minimizer of $f(\vec{\theta})$.

Step size η is chosen ahead of time or adapted during the algorithm (details to come.)
Gradient Descent

• Choose some initialization $\vec{\theta}^{(0)}$.
• For $i = 1, \ldots, t$
 • $\vec{\theta}^{(i)} = \vec{\theta}^{(i-1)} - \eta \nabla f(\vec{\theta}^{(i-1)})$
• Return $\vec{\theta}^{(t)}$, as an approximate minimizer of $f(\vec{\theta})$.

Step size η is chosen ahead of time or adapted during the algorithm (details to come.)

• For now assume η stays the same in each iteration.
Gradient Descent Update: $\vec{\theta}_{i+1} = \vec{\theta}_i - \eta \nabla f(\vec{\theta}_i)$

$\theta \in \mathbb{R}$ $\forall f(\theta) \in \mathbb{R}$