Johnson-Lindenstrauss Lemma: For any set of points $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $M : \mathbb{R}^d \to \mathbb{R}^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = M\mathbf{x}_i$:

For all i, j:

$$(1 - \epsilon)\|\mathbf{x}_i - \mathbf{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\mathbf{x}_i - \mathbf{x}_j\|_2.$$

Further, if $M \in \mathbb{R}^{m \times d}$ has each entry chosen independently from $\mathcal{N}(0, 1/m)$, it satisfies the guarantee with high probability.
Johnson-Lindenstrauss Lemma: For any set of points \(\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d \) and \(\epsilon > 0 \) there exists a linear map \(M : \mathbb{R}^d \rightarrow \mathbb{R}^m \) such that \(m = O \left(\frac{\log n}{\epsilon^2} \right) \) and letting \(\tilde{x}_i = M \vec{x}_i \):

\[
\text{For all } i, j : (1 - \epsilon) \| \vec{x}_i - \vec{x}_j \|_2 \leq \| \tilde{x}_i - \tilde{x}_j \|_2 \leq (1 + \epsilon) \| \vec{x}_i - \vec{x}_j \|_2.
\]

Further, if \(M \in \mathbb{R}^{m \times d} \) has each entry chosen independently from \(\mathcal{N}(0, 1/m) \), it satisfies the guarantee with high probability.

For \(d = 1 \text{ trillion}, \epsilon = .05, \) and \(n = 100,000, \) \(m \approx 6600. \)
Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $M : \mathbb{R}^d \rightarrow \mathbb{R}^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = M\vec{x}_i$:

For all i, j:

$$(1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2.$$

Further, if $M \in \mathbb{R}^{m \times d}$ has each entry chosen independently from $\mathcal{N}(0, 1/m)$, it satisfies the guarantee with high probability.

For $d = 1$ trillion, $\epsilon = .05$, and $n = 100,000$, $m \approx 6600$.

Very surprising! Powerful result with a simple construction: applying a random linear transformation to a set of points preserves distances between all those points with high probability.
For any $\tilde{x}_1, \ldots, \tilde{x}_n$ and $M \in \mathbb{R}^{m \times d}$ with each entry chosen independently from $\mathcal{N}(0, 1/m)$, with high probability, letting $\tilde{x}_i = M\tilde{x}_i$:

For all i, j:

$$(1 - \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\tilde{x}_i - \tilde{x}_j\|_2.$$
For any $\mathbf{x}_1, \ldots, \mathbf{x}_n$ and $\mathbf{M} \in \mathbb{R}^{m \times d}$ with each entry chosen independently from $\mathcal{N}(0, 1/m)$, with high probability, letting $\tilde{\mathbf{x}}_i = \mathbf{M} \mathbf{x}_i$:

For all i, j: $(1 - \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|_2 \leq \|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 \leq (1 + \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|_2$.

- \mathbf{M} is known as a random projection. It is a random linear function, mapping length d vectors to length m vectors.
For any \(\vec{x}_1, \ldots, \vec{x}_n \) and \(M \in \mathbb{R}^{m \times d} \) with each entry chosen independently from \(\mathcal{N}(0, 1/m) \), with high probability, letting \(\tilde{x}_i = M\vec{x}_i \):

For all \(i, j \):

\[
(1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2.
\]

- \(M \) is known as a random projection. It is a random linear function, mapping length \(d \) vectors to length \(m \) vectors.
- \(M \) is data oblivious. Stark contrast to methods like PCA.
• Alternative constructions: ±1 entries, sparse (most entries 0), Fourier structured, etc. \rightarrow efficient computation of $\tilde{x}_i = M\tilde{x}_i$.
• Alternative constructions: ±1 entries, sparse (most entries 0), Fourier structured, etc. \(\implies \) efficient computation of \(\tilde{x}_i = M\tilde{x}_i. \)

• Data oblivious property means that once \(M \) is chosen, \(\tilde{x}_1, \ldots, \tilde{x}_n \) can be computed in a stream with little memory.

• Storage is just \(O(nm) \) rather than \(O(nd) \).
• Alternative constructions: ±1 entries, sparse (most entries 0), Fourier structured, etc. \Rightarrow efficient computation of $\tilde{x}_i = M\tilde{x}_i$.

• Data oblivious property means that once M is chosen, $\tilde{x}_1, \ldots, \tilde{x}_n$ can be computed in a stream with little memory.

• Storage is just $O(nm)$ rather than $O(nd)$.

• Compression can be performed in parallel on different servers.
• Alternative constructions: ±1 entries, sparse (most entries 0), Fourier structured, etc. \(\Rightarrow \) efficient computation of \(\tilde{x}_i = M\tilde{x}_i \).

• Data oblivious property means that once \(M \) is chosen, \(\tilde{x}_1, \ldots, \tilde{x}_n \) can be computed in a stream with little memory.

• Storage is just \(O(nm) \) rather than \(O(nd) \).

• Compression can be performed in parallel on different servers.

• When new data points are added, can be easily compressed, without updating existing points.
The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O \left(\frac{\log(1/\delta)}{\epsilon^2} \right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1 - \epsilon) \| \vec{y} \|_2 \leq \| M\vec{y} \|_2 \leq (1 + \epsilon) \| \vec{y} \|_2$$

$M \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
The Johnson-Lindenstrauss Lemma is a direct consequence of a closely related lemma:

Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$
(1 - \epsilon)\|\vec{y}\|_2 \leq \|M\vec{y}\|_2 \leq (1 + \epsilon)\|\vec{y}\|_2
$$

I.e., applying a random matrix M to any vector \vec{y} preserves the norm with high probability. Like a low-distortion embedding, but for the length of a compressed vector rather than distances between vectors.

$M \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
Distributional JL Lemma \implies JL Lemma: Distributional JL show that a random projection M preserves the norm of any y. The main JL Lemma says that M preserves distances between vectors.
Distributional JL Lemma \Rightarrow JL Lemma: Distributional JL show that a random projection M preserves the norm of any y. The main JL Lemma says that M preserves distances between vectors. Since M is linear these are the same thing!
Distributional JL Lemma \implies JL Lemma: Distributional JL show that a random projection M preserves the norm of any y. The main JL Lemma says that M preserves distances between vectors. Since M is linear these are the same thing!

Proof: Given x_1, \ldots, x_n, define $(n \choose 2)$ vectors y_{ij} where $y_{ij} = x_i - x_j$.
Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection M preserves the norm of any y. The main JL Lemma says that M preserves distances between vectors. Since M is linear these are the same thing!

Proof: Given x_1, \ldots, x_n, define $\binom{n}{2}$ vectors y_{ij} where $y_{ij} = x_i - x_j$.

- If we choose M with $m = O\left(\epsilon^{-2}\log 1/\delta'\right)$, for each y_{ij} with probability at least $1 - \delta'$ we have:

 $$
 (1 - \epsilon)\|y_{ij}\|_2 \leq \|My_{ij}\|_2 \leq (1 + \epsilon)\|y_{ij}\|_2
 $$

Distributional JL Lemma \Rightarrow JL Lemma: Distributional JL show that a random projection M preserves the norm of any y. The main JL Lemma says that M preserves distances between vectors. Since M is linear these are the same thing!

Proof: Given x_1, \ldots, x_n, define $\left(\begin{array}{c} n \\ 2 \end{array} \right)$ vectors y_{ij} where $y_{ij} = x_i - x_j$.

- If we choose M with $m = O \left(\epsilon^{-2} \log 1/\delta' \right)$, for each y_{ij} with probability at least $1 - \delta'$ we have:

$$ (1 - \epsilon) \|y_{ij}\|_2 \leq \|My_{ij}\|_2 \leq (1 + \epsilon) \|y_{ij}\|_2 $$
Distributional JL Lemma \implies JL Lemma: Distributional JL show that a random projection M preserves the norm of any y. The main JL Lemma says that M preserves distances between vectors. Since M is linear these are the same thing!

Proof: Given x_1, \ldots, x_n, define $\binom{n}{2}$ vectors y_{ij} where $y_{ij} = x_i - x_j$.

- If we choose M with $m = O\left(\epsilon^{-2}\log 1/\delta'\right)$, for each y_{ij} with probability at least $1 - \delta'$ we have:

$$
(1 - \epsilon)\|x_i - x_j\|_2 \leq \|M(x_i - x_j)\|_2 \leq (1 + \epsilon)\|x_i - x_j\|_2
$$
Distributional JL Lemma \implies JL Lemma: Distributional JL show that a random projection M preserves the norm of any y. The main JL Lemma says that M preserves distances between vectors. Since M is linear these are the same thing!

Proof: Given x_1, \ldots, x_n, define $\binom{n}{2}$ vectors y_{ij} where $y_{ij} = x_i - x_j$.

- If we choose M with $m = O\left(\epsilon^{-2}\log 1/\delta'\right)$, for each y_{ij} with probability at least $1 - \delta'$ we have:

\[
(1 - \epsilon)\|x_i - x_j\|_2 \leq \|Mx_i - Mx_j\|_2 \leq (1 + \epsilon)\|x_i - x_j\|_2
\]
Distributional JL Lemma \implies JL Lemma: Distributional JL show that a random projection M preserves the norm of any y. The main JL Lemma says that M preserves distances between vectors. Since M is linear these are the same thing!

Proof: Given x_1, \ldots, x_n, define $\binom{n}{2}$ vectors y_{ij} where $y_{ij} = x_i - x_j$.

- If we choose M with $m = O\left(\epsilon^{-2}\log 1/\delta'\right)$, for each y_{ij} with probability at least $1 - \delta'$ we have:

\[
(1 - \epsilon)\|x_i - x_j\|_2 \leq \|Mx_i - Mx_j\|_2 \leq (1 + \epsilon)\|x_i - x_j\|_2
\]
Distributional JL Lemma \implies **JL Lemma:** Distributional JL show that a random projection M preserves the norm of any y. The main JL Lemma says that M preserves distances between vectors. Since M is linear these are the same thing!

Proof: Given x_1, \ldots, x_n, define $\binom{n}{2}$ vectors y_{ij} where $y_{ij} = x_i - x_j$.

- If we choose M with $m = O\left(\epsilon^{-2} \log 1/\delta’\right)$, for each y_{ij} with probability at least $1 - \delta’$ we have:

$$
(1 - \epsilon)\|x_i - x_j\|_2 \leq \|M x_i - M x_j\|_2 \leq (1 + \epsilon)\|x_i - x_j\|_2
$$

- Union Bound: Every distance preserved with probability $1 - \binom{n}{2} \cdot \delta’$.

Distributional JL Lemma \implies JL Lemma: Distributional JL show that a random projection M preserves the norm of any y. The main JL Lemma says that M preserves distances between vectors. Since M is linear these are the same thing!

Proof: Given x_1, \ldots, x_n, define $\binom{n}{2}$ vectors y_{ij} where $y_{ij} = x_i - x_j$.

- If we choose M with $m = O\left(\epsilon^{-2}\log 1/\delta'\right)$, for each y_{ij} with probability at least $1 - \delta'$ we have:

\[
(1 - \epsilon)\|x_i - x_j\|_2 \leq \|Mx_i - Mx_j\|_2 \leq (1 + \epsilon)\|x_i - x_j\|_2
\]

- Union Bound: Every distance preserved with probability $1 - \binom{n}{2} \cdot \delta'$.
- Setting $\delta' = \delta/\binom{n}{2}$ ensures all distances preserved with probability $1 - \delta$ and

\[
m = O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{\log(\binom{n}{2}/\delta)}{\epsilon^2}\right) = O\left(\frac{\log(n/\delta)}{\epsilon^2}\right)
\]
Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0, 1/m)$ entries. If we set $m = O \left(\frac{\log(1/\delta)}{\epsilon^2} \right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1 - \delta$

$$(1 - \epsilon)\|y\|_2 \leq \|My\|_2 \leq (1 + \epsilon)\|y\|_2.$$
Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0, 1/m)$ entries. If we set $m = O \left(\frac{\log(1/\delta)}{\epsilon^2} \right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1 - \delta$

$$(1 - \epsilon)\|y\|_2 \leq \|My\|_2 \leq (1 + \epsilon)\|y\|_2.$$

• Let $\tilde{y} = My$ and M_j be the j^{th} row of M
Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0, 1/m)$ entries. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1 - \delta$

$$(1 - \epsilon)\|y\|_2 \leq \|My\|_2 \leq (1 + \epsilon)\|y\|_2.$$

- Let $\tilde{y} = My$ and M_j be the j^{th} row of M
- For any j, $\tilde{y}_j = \langle M_j, y \rangle$
Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0, 1/m)$ entries. If we set $m = O \left(\frac{\log(1/\delta)}{\epsilon^2} \right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1 - \delta$

$$(1 - \epsilon)\|y\|_2 \leq \|My\|_2 \leq (1 + \epsilon)\|y\|_2.$$

- Let $\tilde{y} = My$ and M_j be the j^{th} row of M
- For any j, $\tilde{y}_j = \langle M_j, y \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot y_i$ where $g_i \sim \mathcal{N}(0, 1/m)$.
Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0, 1/m)$ entries. If we set $m = O \left(\frac{\log(1/\delta)}{\epsilon^2} \right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1 - \delta$

$$(1 - \epsilon) \|y\|_2 \leq \|My\|_2 \leq (1 + \epsilon) \|y\|_2.$$

- Let $\tilde{y} = My$ and M_j be the j^{th} row of M.
- For any j, $\tilde{y}_j = \langle M_j, y \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot y_i$ where $g_i \sim \mathcal{N}(0, 1/m)$.
- By linearity of expectation:

$$\mathbb{E}[\tilde{y}_j] = \sum_{i=1}^{d} \mathbb{E}[g_i] \cdot y_i = 0.$$
Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0, 1/m)$ entries. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1 - \delta$

$$(1 - \epsilon)\|y\|_2 \leq \|My\|_2 \leq (1 + \epsilon)\|y\|_2.$$

- Let $\tilde{y} = My$ and M_j be the j^{th} row of M.
- For any j, $\tilde{y}_j = \langle M_j, y \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot y_i$ where $g_i \sim \mathcal{N}(0, 1/m)$.
- By linearity of expectation:

$$\mathbb{E}[\tilde{y}_j] = \sum_{i=1}^{d} \mathbb{E}[g_i] \cdot y_i = 0.$$

- By linearity of variance:

$$\mathbb{E}[\tilde{y}_j^2] = \text{Var}[\tilde{y}_j] = \sum_{i=1}^{d} \text{Var}[g_i \cdot y_i] = \sum_{i} y_i^2 / m = \|y\|_2^2 / m.$$
DISTRIBUTIONAL JL PROOF

Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0, 1/m)$ entries. If we set $m = O \left(\frac{\log(1/\delta)}{\epsilon^2} \right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1 - \delta$

$$(1 - \epsilon)\|y\|_2 \leq \|My\|_2 \leq (1 + \epsilon)\|y\|_2.$$

- Let $\tilde{y} = My$ and M_j be the j^{th} row of M
- For any j, $\tilde{y}_j = \langle M_j, y \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^d g_i \cdot y_i$ where $g_i \sim \mathcal{N}(0, 1/m)$.
- By linearity of expectation:
 $$\mathbb{E}[\tilde{y}_j] = \sum_{i=1}^d \mathbb{E}[g_i] \cdot y_i = 0.$$
- By linearity of variance:
 $$\mathbb{E}[\tilde{y}_j^2] = \text{Var}[\tilde{y}_j] = \sum_{i=1}^d \text{Var}[g_i \cdot y_i] = \sum_i y_i^2 / m = \|y\|_2^2 / m.$$
- And hence $\mathbb{E}[\sum_j \tilde{y}_j^2] = \|y\|_2^2.$
Letting \(\tilde{y} = My \), we have \(\tilde{y}_j = \langle M_j, y \rangle \) and:

\[
\tilde{y}_j = \sum_{i=1}^{d} g_i \cdot y_i \text{ where } g_i \cdot y_i \sim \mathcal{N}(0, y_i^2/m).
\]

Stability of Gaussian Random Variables. For independent \(a \sim \mathcal{N}(\mu_1, \sigma_1^2) \) and \(b \sim \mathcal{N}(\mu_2, \sigma_2^2) \) we have:

\[
a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)
\]

Thus, \(\tilde{y}_j \sim \mathcal{N}(0, \|y\|_2^2/m) \).