Andrew McGregor
Lecture 9
Balancing Hit Rate and Query Time

Given two sets x, y, MH is a random hash function such that

$$\Pr[MH(x) = MH(y)] = J(x, y) = \frac{|x \cap y|}{|x \cup y|}.$$

Use multiple such hash functions to reduce false negative probability (a high hit rate) and false positive probability (a small query time.)
Given two sets x, y, MH is a random hash function such that

$$\Pr[\text{MH}(x) = \text{MH}(y)] = J(x, y) = \frac{|x \cap y|}{|x \cup y|}.$$

Use multiple such hash functions to reduce false negative probability (a high hit rate) and false positive probability (a small query time.)

Create t hash tables. Each is indexed into not with a single MinHash value, but with r values, appended together. A length r signature.
Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity $J(x, y) = s$:

- Probability that a single hash matches.
- Probability that x and y having matching signatures in repetition i.
- Probability that x and y don't match in repetition i: $1 - s^r$.
- Probability that x and y don't match in all repetitions: $(1 - s^r)^t$.
- Probability that x and y match in at least one repetition: Hit Probability: $1 - (1 - s^r)^t$.

Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity $J(x, y) = s$:

- Probability that a single hash matches.
 \[\Pr [MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s. \]
Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity $J(x, y) = s$:

- **Probability that a single hash matches.**
 $$\Pr [MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s.$$

- **Probability that x and y having matching signatures in repetition i.**
 $$\Pr [MH_{i,1}(x), \ldots, MH_{i,r}(x) = MH_{i,1}(y), \ldots, MH_{i,r}(y)].$$
Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity $J(x, y) = s$:

- Probability that a single hash matches.
 $\Pr[MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s$.

- Probability that x and y having matching signatures in repetition i.
 $\Pr[MH_{i,1}(x), \ldots, MH_{i,r}(x) = MH_{i,1}(y), \ldots, MH_{i,r}(y)] = s^r$.
Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity $J(x, y) = s$:

- Probability that a single hash matches.
 $$\Pr [MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s.$$

- Probability that x and y having matching signatures in repetition i.
 $$\Pr [MH_{i,1}(x), \ldots, MH_{i,r}(x) = MH_{i,1}(y), \ldots, MH_{i,r}(y)] = s^r.$$

- Probability that x and y don’t match in repetition i:
 $$\Pr [MH_{i,1}(x) \neq MH_{i,1}(y), \ldots, MH_{i,r}(x) \neq MH_{i,r}(y)] = 1 - s^r.$$
Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity $J(x, y) = s$:

- Probability that a single hash matches.
 $$\Pr [MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s.$$

- Probability that x and y having matching signatures in repetition i.
 $$\Pr [MH_{i,1}(x), \ldots, MH_{i,r}(x) = MH_{i,1}(y), \ldots, MH_{i,r}(y)] = s^r.$$

- Probability that x and y don’t match in repetition i: $1 - s^r$.

BALANCING HIT RATE AND QUERY TIME
Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity $J(x, y) = s$:

- Probability that a single hash matches.
 $$\Pr [MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s.$$

- Probability that x and y having matching signatures in repetition i.
 $$\Pr [MH_{i,1}(x), \ldots, MH_{i,r}(x) = MH_{i,1}(y), \ldots, MH_{i,r}(y)] = s^r.$$

- Probability that x and y don’t match in repetition i: $1 - s^r$.

- Probability that x and y don’t match in all repetitions:
Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity $J(x, y) = s$:

- Probability that a single hash matches.
 $\Pr[\text{MH}_{i,j}(x) = \text{MH}_{i,j}(y)] = J(x, y) = s$.

- Probability that x and y having matching signatures in repetition i.
 $\Pr[\text{MH}_{i,1}(x), \ldots, \text{MH}_{i,r}(x) = \text{MH}_{i,1}(y), \ldots, \text{MH}_{i,r}(y)] = s^r$.

- Probability that x and y don’t match in repetition i: $1 - s^r$.

- Probability that x and y don’t match in all repetitions: $(1 - s^r)^t$.

BALANCING HIT RATE AND QUERY TIME
Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity $J(x, y) = s$:

- Probability that a single hash matches.
 \[
 \Pr[MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s.
 \]

- Probability that x and y having matching signatures in repetition i.
 \[
 \Pr[MH_{i,1}(x), \ldots, MH_{i,r}(x) = MH_{i,1}(y), \ldots, MH_{i,r}(y)] = s^r.
 \]

- Probability that x and y don’t match in repetition i: $1 - s^r$.

- Probability that x and y don’t match in all repetitions: $(1 - s^r)^t$.

- Probability that x and y match in at least one repetition:
Consider searching for matches in t hash tables, using MinHash signatures of length r. For x and y with Jaccard similarity $J(x, y) = s$:

- Probability that a single hash matches.
 \[\text{Pr} [MH_{i,j}(x) = MH_{i,j}(y)] = J(x, y) = s. \]

- Probability that x and y having matching signatures in repetition i.
 \[\text{Pr} [MH_{i,1}(x), \ldots, MH_{i,r}(x) = MH_{i,1}(y), \ldots, MH_{i,r}(y)] = s^r. \]

- Probability that x and y don’t match in repetition i: $1 - s^r$.

- Probability that x and y don’t match in all repetitions: $(1 - s^r)^t$.

- Probability that x and y match in at least one repetition:
 \[\text{Hit Probability: } 1 - (1 - s^r)^t. \]
Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity $J(x, y) = s$ match in at least one repetition is: $1 - (1 - s^r)^t$.
Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity $J(x, y) = s$ match in at least one repetition is: $1 - (1 - s^r)^t$.
Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity $J(x, y) = s$ match in at least one repetition is: $1 - (1 - s^r)^t$.

![Graph showing the relationship between Jaccard Similarity and Hit Probability with $r = 10, t = 10$.]
Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity $J(x, y) = s$ match in at least one repetition is: $1 - (1 - s^r)^t$.

![Graph showing the hit probability for different Jaccard similarities with $r = 5$ and $t = 30$.]
Using t repetitions each with a signature of r MinHash values, the probability that x and y with Jaccard similarity $J(x, y) = s$ match in at least one repetition is: $1 - (1 - s^r)^t$.

r and t are tuned depending on application.
S-CURVE EXAMPLE

For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with $J(x, y) \geq .9$.

- There are 10 true matches in the database with $J(x, y) \geq .9$.
- There are 10,000 near matches with $J(x, y) \in [.7, .9]$.
- With signature length $r = 25$ and repetitions $t = 50$, hit probability for $J(x, y) = s$ is $1 - (1 - s)^{25/50}$.
- Hit probability for $J(x, y) \geq .9$ is $\geq 1 - (1 - .9)^{20/40} \approx .98$.
- Hit probability for $J(x, y) \in [.7, .9]$ is $\leq 1 - (1 - .7)^{20/40} \approx .98$.
- Hit probability for $J(x, y) \leq .7$ is $\leq 1 - (1 - .7)^{20/40} \approx .007$.

Expected Number of Items Scanned: (proportional to query time) $\leq 10 + .98 \times 10,000 + .007 \times 9,989,990\approx 80,000 \ll 10,000,000$.

For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with $J(x, y) \geq .9$.

- There are 10 **true matches** in the database with $J(x, y) \geq .9$.
- There are 10,000 **near matches** with $J(x, y) \in [.7, .9]$.
For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with $J(x, y) \geq .9$.

• There are 10 true matches in the database with $J(x, y) \geq .9$.
• There are 10,000 near matches with $J(x, y) \in [.7, .9]$.

With signature length $r = 25$ and repetitions $t = 50$, hit probability for $J(x, y) = s$ is $1 - (1 - s^{25})^{50}$.
For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with $J(x, y) \geq .9$.

- There are 10 true matches in the database with $J(x, y) \geq .9$.
- There are 10,000 near matches with $J(x, y) \in [.7, .9]$.

With signature length $r = 25$ and repetitions $t = 50$, hit probability for $J(x, y) = s$ is $1 - (1 - s^{25})^{50}$.

- Hit probability for $J(x, y) \geq .9$ is $\geq 1 - (1 - .9^{20})^{40} \approx .98$
- Hit probability for $J(x, y) \in [.7, .9]$ is $\leq 1 - (1 - .9^{20})^{40} \approx .98$
- Hit probability for $J(x, y) \leq .7$ is $\leq 1 - (1 - .7^{20})^{40} \approx .007$
For example: Consider a database with 10,000,000 audio clips. You are given a clip \(x \) and want to find any \(y \) in the database with \(J(x, y) \geq .9 \).

- There are 10 true matches in the database with \(J(x, y) \geq .9 \).
- There are 10,000 near matches with \(J(x, y) \in [.7, .9] \).

With signature length \(r = 25 \) and repetitions \(t = 50 \), hit probability for \(J(x, y) = s \) is \(1 - (1 - s^{25})^{50} \).

- Hit probability for \(J(x, y) \geq .9 \) is \(\geq 1 - (1 - .9^{20})^{40} \approx .98 \)
- Hit probability for \(J(x, y) \in [.7, .9] \) is \(\leq 1 - (1 - .9^{20})^{40} \approx .98 \)
- Hit probability for \(J(x, y) \leq .7 \) is \(\leq 1 - (1 - .7^{20})^{40} \approx .007 \)

Expected Number of Items Scanned: (proportional to query time)

\[\leq 10 + .98 \times 10,000 + .007 \times 9,989,990 \approx 80,000 \]
For example: Consider a database with 10,000,000 audio clips. You are given a clip x and want to find any y in the database with $J(x, y) \geq .9$.

- There are 10 **true matches** in the database with $J(x, y) \geq .9$.
- There are 10,000 **near matches** with $J(x, y) \in [.7, .9]$.

With signature length $r = 25$ and repetitions $t = 50$, hit probability for $J(x, y) = s$ is $1 - (1 - s^{25})^{50}$.

- Hit probability for $J(x, y) \geq .9$ is $\geq 1 - (1 - .9^{20})^{40} \approx .98$
- Hit probability for $J(x, y) \in [.7, .9]$ is $\leq 1 - (1 - .9^{20})^{40} \approx .98$
- Hit probability for $J(x, y) \leq .7$ is $\leq 1 - (1 - .7^{20})^{40} \approx .007$

Expected Number of Items Scanned: (proportional to query time)

$$\leq 10 + .98 \times 10,000 + .007 \times 9,989,990 \approx 80,000 \ll 10,000,000.$$
Repetition and s-curve tuning can be used for fast similarity search with any similarity metric, given a locality sensitive hash function for that metric.

Cosine Similarity:

\[
\cos(\theta(x, y)) = \frac{\langle x, y \rangle}{\|x\|_2 \cdot \|y\|_2}.
\]

- \(\cos(\theta(x, y)) = 1\) when \(\theta(x, y) = 0\)
- \(\cos(\theta(x, y)) = 0\) when \(\theta(x, y) = \pi/2\)
- \(\cos(\theta(x, y)) = -1\) when \(\theta(x, y) = \pi\)
Repetition and s-curve tuning can be used for fast similarity search with any similarity metric, given a locality sensitive hash function for that metric.

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.
GENERALIZING LOCALITY SENSITIVE HASHING

Repetition and s-curve tuning can be used for fast similarity search with any similarity metric, given a locality sensitive hash function for that metric.

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.
Repetition and s-curve tuning can be used for fast similarity search with any similarity metric, given a locality sensitive hash function for that metric.

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.
Repetition and s-curve tuning can be used for fast similarity search with any similarity metric, given a locality sensitive hash function for that metric.

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.

Cosine Similarity: \(\cos(\theta(x, y)) \)
Repetition and s-curve tuning can be used for fast similarity search with any similarity metric, given a locality sensitive hash function for that metric.

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.

Cosine Similarity: $\cos(\theta(x, y))$

- $\cos(\theta(x, y)) = 1$ when $\theta(x, y) = 0$ and $\cos(\theta(x, y)) = 0$ when $\theta(x, y) = \pi/2$, and $\cos(\theta(x, y)) = -1$ when $\theta(x, y) = \pi$
Repetition and s-curve tuning can be used for fast similarity search with any similarity metric, given a locality sensitive hash function for that metric.

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.

Cosine Similarity: $\cos(\theta(x, y)) = \frac{\langle x, y \rangle}{\|x\|_2 \cdot \|y\|_2}$.

- $\cos(\theta(x, y)) = 1$ when $\theta(x, y) = 0$ and $\cos(\theta(x, y)) = 0$ when $\theta(x, y) = \pi/2$, and $\cos(\theta(x, y)) = -1$ when $\theta(x, y) = \pi$
SimHash Algorithm: LSH for cosine similarity.
SimHash Algorithm: LSH for cosine similarity.

\[\text{SimHash}(x) = \text{sign}(\langle x, t \rangle) \] for a random vector \(t \).
SimHash Algorithm: LSH for cosine similarity.

SimHash(x) = \text{sign}(\langle x, t \rangle) \text{ for a random vector } t.
SimHash Algorithm: LSH for cosine similarity.
SimHash Algorithm: LSH for cosine similarity.

$SimHash(x) = \text{sign}(\langle x, t \rangle)$ for a random vector t.
SimHash Algorithm: LSH for cosine similarity.

SimHash \((x) = \text{sign}(\langle x, t \rangle) \) for a random vector \(t \).

What is \(\Pr [\text{SimHash}(x) = \text{SimHash}(y)] \)?
What is \(\Pr[SimHash(x) = SimHash(y)] \)?

\[
\Pr[SimHash(x) \neq SimHash(y)] = \theta(x, y) \pi
\]

\[
\Pr[SimHash(x) = SimHash(y)] = 1 - \theta(x, y) \pi \approx \cos(\theta(x, y)) + \frac{1}{2}
\]

if \(\theta(x, y) \approx \frac{\pi}{2} \).
What is \(\Pr [\text{SimHash}(x) = \text{SimHash}(y)] \)?

\(\text{SimHash}(x) \neq \text{SimHash}(y) \) when the plane separates \(x \) from \(y \).
What is $\Pr [\text{SimHash}(x) = \text{SimHash}(y)]$?

$\text{SimHash}(x) \neq \text{SimHash}(y)$ when the plane separates x from y.

\[
\Pr [\text{SimHash}(x) = \text{SimHash}(y)] = \frac{1}{\pi} \approx \cos(\frac{\theta(x, y)}{2}) + 1 \text{ if } \theta(x, y) \approx \frac{\pi}{2}.
\]
What is $\Pr [\text{SimHash}(x) = \text{SimHash}(y)]$?

$\text{SimHash}(x) \neq \text{SimHash}(y)$ when the plane separates x from y.

- $\Pr [\text{SimHash}(x) \neq \text{SimHash}(y)] = \frac{\theta(x,y)}{\pi}$
What is $\Pr [\text{SimHash}(x) = \text{SimHash}(y)]$?

$\text{SimHash}(x) \neq \text{SimHash}(y)$ when the plane separates x from y.

- $\Pr [\text{SimHash}(x) \neq \text{SimHash}(y)] = \frac{\theta(x,y)}{\pi}$
- $\Pr [\text{SimHash}(x) = \text{SimHash}(y)] = 1 - \frac{\theta(x,y)}{\pi} \approx \frac{\cos(\theta(x,y)) + 1}{2}$ if $\theta \approx \frac{\pi}{2}$.
Questions on MinHash and Locality Sensitive Hashing?
k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item that appears at least $\frac{n}{k}$ times.
k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item that appears at least $\frac{n}{k}$ times.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
THE FREQUENT ITEMS PROBLEMS

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of \(n \) items \(x_1, \ldots, x_n \) (with possible duplicates). Return any item that appears at least \(\frac{n}{k} \) times.

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_6)</th>
<th>(x_7)</th>
<th>(x_8)</th>
<th>(x_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>
\textbf{k-Frequent Items (Heavy-Hitters) Problem}: Consider a stream of \(n \) items \(x_1, \ldots, x_n \) (with possible duplicates). Return any item that appears at least \(\frac{n}{k} \) times.

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_6)</th>
<th>(x_7)</th>
<th>(x_8)</th>
<th>(x_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

- What is the maximum number of items that must be returned?
 - a) \(n \)
 - b) \(k \)
 - c) \(n/k \)
 - d) \(\log n \)
k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

- What is the maximum number of items that must be returned?
 a) n b) k c) n/k d) $\log n$
k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item that appears at least $\frac{n}{k}$ times.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

- What is the maximum number of items that must be returned?
 a) n
 b) k
 c) n/k
 d) $\log n$

- Trivial with $O(n)$ space: Store the count for each item and return the one that appears $\geq n/k$ times.

- Can we do it with less space? I.e., without storing all n items?
THE FREQUENT ITEMS PROBLEM

Applications of Frequent Items:

• Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
• Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).
• ‘Iceberg queries’ for all items in a database with frequency above some threshold.
Generally want very fast detection, without having to scan through database/logs. That is we want to maintain a running list of frequent items that appear in a stream.
Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).
Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).
- ‘Iceberg queries’ for all items in a database with frequency above some threshold.
Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).
- ‘Iceberg queries’ for all items in a database with frequency above some threshold.

Generally want very fast detection, without having to scan through database/logs. That is we want to maintain a running list of frequent items that appear in a stream.
FREQUENT ITEMSET MINING

Association rule learning: A very common task in data mining is to identify common associations between different events.
Association rule learning: A very common task in data mining is to identify common associations between different events.

Frequent itemset mining:

- Identified via frequent itemset counting. Find all sets of \(k \) items that appear many times in the same basket.
- Frequency of an itemset is known as its support.
- A single basket includes many different itemsets, and with many different baskets an efficient approach is critical. E.g., baskets are Twitter users and itemsets are subsets of who they follow.
Association rule learning: A very common task in data mining is to identify common associations between different events.
Association rule learning: A very common task in data mining is to identify common associations between different events.

- Identified via frequent itemset counting. Find all sets of k items that appear many times in the same basket.
Association rule learning: A very common task in data mining is to identify common associations between different events.

- Identified via *frequent itemset* counting. Find all sets of k items that appear many times in the same basket.
- Frequency of an itemset is known as its support.
Association rule learning: A very common task in data mining is to identify common associations between different events.

- Identified via frequent itemset counting. Find all sets of k items that appear many times in the same basket.
- Frequency of an itemset is known as its support.
- A single basket includes many different itemsets, and with many different baskets an efficient approach is critical. E.g., baskets are Twitter users and itemsets are subsets of who they follow.
Issue: No algorithm using $o(n)$ space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and $n/k - 1$ (should not be output).
Issue: No algorithm using $o(n)$ space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and $n/k - 1$ (should not be output).

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_{n-k+1}</th>
<th>x_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>12</td>
<td>9</td>
<td>27</td>
<td>4</td>
<td>101</td>
<td>3</td>
<td>...</td>
</tr>
</tbody>
</table>

$n/k - 1$ occurrences
Issue: No algorithm using $o(n)$ space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and $n/k - 1$ (should not be output).

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>\ldots</th>
<th>$x_{n-n/k+1}$</th>
<th>\ldots</th>
<th>x_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>12</td>
<td>9</td>
<td>27</td>
<td>4</td>
<td>101</td>
<td>\ldots</td>
<td>3</td>
<td>\ldots</td>
<td>3</td>
</tr>
</tbody>
</table>

(ϵ, k)-Frequent Items Problem: Consider a stream of n items x_1, \ldots, x_n. Return a set F of items, including all items that appear at least $\frac{n}{k}$ times and only items that appear at least $(1 - \epsilon) \cdot \frac{n}{k}$ times.
Issue: No algorithm using $o(n)$ space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and $n/k - 1$ (should not be output).

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>...</th>
<th>x_{n-k+1}</th>
<th>...</th>
<th>x_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>12</td>
<td>9</td>
<td>27</td>
<td>4</td>
<td>101</td>
<td>...</td>
<td>3</td>
<td>...</td>
<td>3</td>
</tr>
</tbody>
</table>

$n/k - 1$ occurrences

(ϵ, k)-Frequent Items Problem: Consider a stream of n items x_1, \ldots, x_n. Return a set F of items, including all items that appear at least $\frac{n}{k}$ times and only items that appear at least $(1 - \epsilon) \cdot \frac{n}{k}$ times.

- An example of relaxing to a ‘promise problem’: for items with frequencies in $[(1 - \epsilon) \cdot \frac{n}{k}, \frac{n}{k}]$ no output guarantee.
Today: Count-min sketch – a random hashing based method closely related to bloom filters.
Today: Count-min sketch – a random hashing based method closely related to bloom filters.

We use $A[h(x)]$ to estimate $f(x)$, the frequency of x in the stream. I.e., $|\{x_i : x_i = x\}|$.

Random hash function h

m length array A:

$$
\begin{array}{cccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
$$
Today: Count-min sketch – a random hashing based method closely related to bloom filters.

Let $A[h(x)]$ estimate $f(x)$, the frequency of x in the stream. I.e., $|\{x_i : x_i = x\}|$.
Today: Count-min sketch – a random hashing based method closely related to bloom filters.

Consider a stream of elements \(X_1, X_2, X_3, \ldots, X_n \). We use a random hash function \(h(x) \) to estimate the frequency of each element \(x \) in the stream. The frequency of \(x \), denoted as \(f(x) \), is estimated as follows:

\[
|\{x_i : x_i = x\}|
\]

where \(A \) is an \(m \)-length array with hash values.

![Diagram](image-url)
Today: Count-min sketch – a random hashing based method closely related to bloom filters.

- **Random hash function** \(h \)
- **m length array** \(A \)

\[
\begin{align*}
A &\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \\
X_1 & \rightarrow & h(X_1) & \rightarrow & \text{array index} & \rightarrow & \text{value} & \rightarrow & \text{sum} & \rightarrow & \text{estimated frequency}
\end{align*}
\]
Today: Count-min sketch – a random hashing based method closely related to bloom filters.

Random hash function h maps elements $x_1, x_2, x_3, x_4, \ldots, x_n$ to indices in an m-length array A.
Today: Count-min sketch – a random hashing based method closely related to bloom filters.

![Diagram](image-url)

random hash function h

m length array A
Today: Count-min sketch – a random hashing based method closely related to bloom filters.

Will use $A[h(x)]$ to estimate $f(x)$, the frequency of x in the stream. I.e., $|\{x_i : x_i = x\}|$.
Use $A[h(x)]$ to estimate $f(x)$.

Claim 1: We always have $A[h(x)] \geq f(x)$. Why?

$f(x)$: frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of Count-min sketch array.
Use $A[h(x)]$ to estimate $f(x)$.

Claim 1: We always have $A[h(x)] \geq f(x)$. Why?

- $A[h(x)]$ counts the number of occurrences of any y with $h(y) = h(x)$, including x itself.

$f(x)$: frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of Count-min sketch array.
Use $A[h(x)]$ to estimate $f(x)$.

Claim 1: We always have $A[h(x)] \geq f(x)$. Why?

- $A[h(x)]$ counts the number of occurrences of any y with $h(y) = h(x)$, including x itself.
- $A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y)$.

$f(x)$: frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of Count-min sketch array.
COUNT-MIN SKETCH ACCURACY

\[A[h(x)] = f(x) + \sum_{y \neq x : h(y) = h(x)} f(y) \]

error in frequency estimate

f(x): frequency of \(x \) in the stream (i.e., number of items equal to \(x \)). **h:** random hash function. **m:** size of Count-min sketch array.
\[A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y) . \]

Expected Error:
\[
\mathbb{E} \left[\sum_{y \neq x: h(y) = h(x)} f(y) \right] = \text{error in frequency estimate}
\]

\[f(x): \text{ frequency of } x \text{ in the stream (i.e., number of items equal to } x). \]
\[h: \text{ random hash function. } m: \text{ size of Count-min sketch array.} \]
Count-Min Sketch Accuracy

\[A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y) \]

Expected Error:

\[
\mathbb{E} \left[\sum_{y \neq x: h(y) = h(x)} f(y) \right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)
\]

- **f(x):** frequency of \(x \) in the stream (i.e., number of items equal to \(x \)).
- **h:** random hash function.
- **m:** size of Count-min sketch array.
COUNT-MIN SKETCH ACCURACY

\[A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y) \]

Expected Error:

\[
\mathbb{E} \left[\sum_{y \neq x: h(y) = h(x)} f(y) \right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)
\]

\[
= \sum_{y \neq x} \frac{1}{m} \cdot f(y)
\]

\(f(x) \): frequency of \(x \) in the stream (i.e., number of items equal to \(x \)). \(h \): random hash function. \(m \): size of Count-min sketch array.
\[A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y) \]

Expected Error:

\[
\mathbb{E} \left[\sum_{y \neq x: h(y) = h(x)} f(y) \right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)
\]

\[
= \sum_{y \neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \leq \frac{n}{m}
\]

\[f(x): \text{ frequency of } x \text{ in the stream (i.e., number of items equal to } x). \]
\[h: \text{ random hash function. } m: \text{ size of Count-min sketch array.} \]
A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y).

Expected Error:

\[
\mathbb{E} \left[\sum_{y \neq x: h(y) = h(x)} f(y) \right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)
\]

\[
= \sum_{y \neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \leq \frac{n}{m}
\]

What is a bound on probability that the error is $\geq \frac{2n}{m}$?

$f(x)$: frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of Count-min sketch array.
$A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y)$.

Expected Error:

$$E \left[\sum_{y \neq x: h(y) = h(x)} f(y) \right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)$$

$$= \sum_{y \neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \leq \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{2n}{m}$?

Markov’s inequality: $\Pr \left[\sum_{y \neq x: h(y) = h(x)} f(y) \geq \frac{2n}{m} \right] \leq \frac{1}{2}$.
COUNT-MIN SKETCH ACCURACY

\[A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y) \]

Expected Error:

\[
\mathbb{E} \left[\sum_{y \neq x: h(y) = h(x)} f(y) \right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)
\]

\[
= \sum_{y \neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \leq \frac{n}{m}
\]

What is a bound on probability that the error is \(\geq \frac{2n}{m} \)?

Markov's inequality:

\[
\Pr \left[\sum_{y \neq x: h(y) = h(x)} f(y) \geq \frac{2n}{m} \right] \leq \frac{1}{2}.
\]

What property of \(h \) is required to show this bound?

a) fully random \quad b) pairwise independent \quad c) 2-universal \quad d) locality sensitive

\(f(x) \): frequency of \(x \) in the stream (i.e., number of items equal to \(x \)). \(h \): random hash function. \(m \): size of Count-min sketch array.
COUNT-MIN SKETCH ACCURACY

\[A[h(x)] = f(x) + \sum_{y \neq x: h(y) = h(x)} f(y) \quad . \]

Expected Error:

\[
\mathbb{E}\left[\sum_{y \neq x: h(y) = h(x)} f(y)\right] = \sum_{y \neq x} \Pr(h(y) = h(x)) \cdot f(y)
\]

\[= \sum_{y \neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \leq \frac{n}{m} \]

What is a bound on probability that the error is \(\geq \frac{2n}{m} \)?

Markov’s inequality: \(\Pr\left[\sum_{y \neq x: h(y) = h(x)} f(y) \geq \frac{2n}{m}\right] \leq \frac{1}{2} \).

What property of \(h \) is required to show this bound? a) fully random
 b) pairwise independent
 c) 2-universal
 d) locality sensitive

\(f(x) \): frequency of \(x \) in the stream (i.e., number of items equal to \(x \)). \(h \): random hash function. \(m \): size of Count-min sketch array.
Claim: For any x, with probability at least $1/2$,

$$f(x) \leq A[h(x)] \leq f(x) + \frac{2n}{m}.$$
Claim: For any x, with probability at least $1/2$,

$$f(x) \leq A[h(x)] \leq f(x) + \frac{2n}{m}.$$

To solve the (ϵ, k)-Frequent elements problem, set $m = \frac{2k}{\epsilon}$.

f(x): frequency of x in the stream (i.e., number of items equal to x). **h:** random hash function. **m:** size of Count-min sketch array.
Claim: For any x, with probability at least $1/2$,

$$f(x) \leq A[h(x)] \leq f(x) + \frac{2n}{m}.$$

To solve the (ϵ, k)-Frequent elements problem, set $m = \frac{2k}{\epsilon}$.

How can we improve the success probability?

$f(x)$: frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of Count-min sketch array.
Claim: For any x, with probability at least $1/2$,

$$f(x) \leq A[h(x)] \leq f(x) + \frac{2n}{m}.$$

To solve the (ϵ, k)-Frequent elements problem, set $m = \frac{2k}{\epsilon}$.

How can we improve the success probability? **Repetition.**

- $f(x)$: frequency of x in the stream (i.e., number of items equal to x).
- h: random hash function.
- m: size of Count-min sketch array.
Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$. (count-min sketch)

Why min instead of mean or median? The minimum estimate is always the most accurate since they are all overestimates of the true frequency!
Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$. (count-min sketch)

Why min instead of mean or median? The minimum estimate is always the most accurate since they are all overestimates of the true frequency!
Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$. (count-min sketch)

Why min instead of mean or median?
The minimum estimate is always the most accurate since they are all overestimates of the true frequency!
Count-Min Sketch Accuracy

Estimate \(f(x) \) with \(\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)] \). (count-min sketch)

Why min instead of mean or median?

The minimum estimate is always the most accurate since they are all overestimates of the true frequency!
Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$. (count-min sketch)
Estimate $f(x)$ with $	ilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$. (count-min sketch)
Estimate $f(x)$ with $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$. (count-min sketch)

Why min instead of mean or median?
Estimate \(f(x) \) with \(\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)] \). (count-min sketch)

Why min instead of mean or median? The minimum estimate is always the most accurate since they are all overestimates of the true frequency!
Estimate $f(x)$ by $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$
Estimate $f(x)$ by $	ilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$

- For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$:
 \[f(x) \leq A_i[h_i(x)] \leq f(x) + \frac{\epsilon n}{k}. \]
Estimate $f(x)$ by $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$

- For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$:
 $$f(x) \leq A_i[h_i(x)] \leq f(x) + \frac{\epsilon n}{k}.$$

- What is $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + \frac{\epsilon n}{k}]$?
Estimate $f(x)$ by $	ilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$

- For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$:
 $$f(x) \leq A_i[h_i(x)] \leq f(x) + \frac{\epsilon n}{k}.$$

- What is $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + \frac{\epsilon n}{k}] = 1 - 1/2^t$.

Count-Min Sketch Analysis

$$\begin{array}{c|c|c|c|c|c|c}
\text{Layer} & x_1 & x_2 & x_3 & x_4 & \ldots & x_n \\
\hline
A_1 & 2 & 5 & 1 & 0 & 6 & 12 & 104 & 1 & 3 & 4 \\
A_2 & 1 & 6 & 1 & 10 & 78 & 80 & 4 & 11 & 3 & 5 \\
\vdots & & & & & & & & & & \\
A_t & 90 & 1 & 52 & 6 & 3 & 12 & 33 & 9 & 3 & 2 \\
\end{array}$$

t random hash functions h_1, h_2, \ldots, h_t

t length m arrays
Estimate $f(x)$ by $\tilde{f}(x) = \min_{i \in [t]} A_i[h_i(x)]$

- For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$:
 $$f(x) \leq A_i[h_i(x)] \leq f(x) + \frac{\epsilon n}{k}.$$

- What is $\Pr[f(x) \leq \tilde{f}(x) \leq f(x) + \frac{\epsilon n}{k}] = 1 - 1/2^t$.

- To get a good estimate with probability $\geq 1 - \delta$, set $t = \log(1/\delta)$.

```
<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Upshot: Count-min sketch lets us estimate the frequency of every item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1 - \delta$ in $O(\log(1/\delta) \cdot k/\epsilon)$ space.
Upshot: Count-min sketch lets us estimate the frequency of every item in a stream up to error $\frac{\varepsilon n}{k}$ with probability $\geq 1 - \delta$ in $O(\log(1/\delta) \cdot k/\varepsilon)$ space.

- Accurate enough to solve the (ε, k)-Frequent elements problem – distinguish between items with frequency $\frac{n}{k}$ and those with frequency $(1 - \varepsilon)\frac{n}{k}$.
Upshot: Count-min sketch lets us estimate the frequency of every item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1 - \delta$ in $O(\log(1/\delta) \cdot k/\epsilon)$ space.

- Accurate enough to solve the (ϵ, k)-Frequent elements problem – distinguish between items with frequency $\frac{n}{k}$ and those with frequency $(1 - \epsilon)\frac{n}{k}$.
- How should we set δ if we want a good estimate for all items at once, with 99% probability?
Count-min sketch gives an accurate frequency estimate for every item in the stream. But how do we identify the frequent items without having to store/look up the estimated frequency for all elements in the stream?
Identifying frequent elements

Count-min sketch gives an accurate frequency estimate for every item in the stream. But how do we identify the frequent items without having to store/look up the estimated frequency for all elements in the stream?

One approach:

- When a new item comes in at step i, check if its estimated frequency is $\geq i/k$ and store it if so.
- At step i remove any stored items whose estimated frequency drops below i/k.
- Store at most $O(k)$ items at once and have all items with frequency $\geq n/k$ stored at the end of the stream.
Questions on Frequent Elements?