COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 20
Spectral Graph Partitioning

- Focus on separating graphs with small but relatively balanced cuts.
- Connection to second smallest eigenvector of graph Laplacian.
- Today: Provable guarantees for stochastic block model.
• To partition a graph, find the eigenvector of the Laplacian with the second smallest eigenvalue. Partition nodes based on whether corresponding value in eigenvector is positive/negative.

\[
\vec{v}_{n-1} = \arg \min_{\vec{v} \in \mathbb{R}^n, \|\vec{v}\|=1, \vec{v}^T \vec{1} = 0} \vec{v}^T L \vec{v}
\]

• We argued this "should" partition graph along a small cut that separates the graph into large pieces.

• Haven't given formal guarantees; it's difficult for general input graphs. But can consider randoms "natural" graphs...
• To partition a graph, find the eigenvector of the Laplacian with the second smallest eigenvalue. Partition nodes based on whether corresponding value in eigenvector is positive/negative.

\[\vec{v}_{n-1} = \arg \min_{\vec{v} \in \mathbb{R}^n, \|\vec{v}\|=1, \vec{v}^T \vec{1} = 0} \vec{v}^T L \vec{v} \]

• We argued this “should” partition graph along a small cut that separates the graph into large pieces.
• To partition a graph, find the eigenvector of the Laplacian with the second smallest eigenvalue. Partition nodes based on whether corresponding value in eigenvector is positive/negative.

\[
\vec{v}_{n-1} = \arg \min_{\vec{v} \in \mathbb{R}^n, \|\vec{v}\|=1, \vec{v}^T \vec{1}=0} \vec{v}^T L \vec{v}
\]

• We argued this “should” partition graph along a small cut that separates the graph into large pieces.

• Haven’t given formal guarantees; it’s difficult for general input graphs. But can consider randoms “natural” graphs...
Stochastic Block Model (Planted Partition Model): Let $G_n(p, q)$ be a distribution over graphs on n nodes, split randomly into two groups B and C, each with $n/2$ nodes.

- Any two nodes in the same group are connected with probability p (including self-loops).
- Any two nodes in different groups are connected with prob. $q < p$.
- Connections are independent.
Let G be a stochastic block model graph drawn from $G_n(p, q)$.

- Let $A \in \mathbb{R}^{n \times n}$ be the adjacency matrix of G, ordered in terms of group ID.

$G_n(p, q)$: stochastic block model distribution. B, C: groups with $n/2$ nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.
Letting G be a stochastic block model graph drawn from $G_n(p, q)$ and $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[A])_{i,j} = p$ for i,j in same group, $(\mathbb{E}[A])_{i,j} = q$ otherwise.

$G_n(p, q)$: stochastic block model distribution. B, C: groups with $n/2$ nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.
Letting G be a stochastic block model graph drawn from $G_n(p, q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i,j} = p$ for i, j in same group, $(\mathbb{E}[\mathbf{A}])_{i,j} = q$ otherwise.

What is $\text{rank}(\mathbb{E}[\mathbf{A}])$? What are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{A}]$?

$G_n(p, q)$: stochastic block model distribution. B, C: groups with $n/2$ nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.
If we compute \vec{v}_2 then we recover the communities B and C!
If we compute \vec{v}_2 then we recover the communities B and C!

• Can show that for $G \sim G_n(p, q)$, A is “close” to $E[A]$ in some appropriate sense (matrix concentration inequality).
If we compute \vec{v}_2 then we recover the communities B and C!

- Can show that for $G \sim G_n(p, q)$, A is “close” to $\mathbb{E}[A]$ in some appropriate sense (matrix concentration inequality).
- Second eigenvector of A is close to $[1, 1, 1, \ldots, -1, -1, -1]$ and gives a good estimate of the communities.
If we compute \vec{v}_2 then we recover the communities B and C!

- Can show that for $G \sim G_n(p, q)$, A is “close” to $E[A]$ in some appropriate sense (matrix concentration inequality).
- Second eigenvector of A is close to $[1, 1, 1, \ldots, -1, -1, -1]$ and gives a good estimate of the communities.

When rows/columns aren’t sorted by ID, second eigenvector is e.g., $[1, -1, 1, -1, \ldots, 1, 1, -1]$ and entries give community ids.
Letting G be a stochastic block model graph drawn from $G_n(p, q)$, $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix and L be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[L]$?
Upshot: The second smallest eigenvector of $\mathbb{E}[\mathbf{L}]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.
Upshot: The second smallest eigenvector of $\mathbb{E}[L]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.

- If the matrices A and L were exactly equal to their expectation, partitioning using this eigenvector (i.e., spectral clustering) would exactly recover the two communities B and C.

How do we show that a matrix is close to its expectation? Matrix concentration inequalities.

Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.

Random matrix theory is a very recent and cutting edge subfield of mathematics that is being actively applied in computer science, statistics, and ML.
Upshot: The second smallest eigenvector of $\mathbb{E}[L]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.

- If the matrices A and L were exactly equal to their expectation, partitioning using this eigenvector (i.e., spectral clustering) would exactly recover the two communities B and C.

How do we show that a matrix is close to its expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.

- Random matrix theory is a very recent and cutting edge subfield of mathematics that is being actively applied in computer science, statistics, and ML.
Matrix Concentration Inequality: If $p \geq O\left(\frac{\log^4 n}{n}\right)$, then with high probability

$$\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).$$

where $\|\cdot\|_2$ is the matrix spectral norm (operator norm).

For any $X \in \mathbb{R}^{n \times d}$, $\|X\|_2 = \max_{z \in \mathbb{R}^d: \|z\|_2=1} \|Xz\|_2$.
Matrix Concentration Inequality: If $p \geq O\left(\frac{\log^4 n}{n}\right)$, then with high probability

$$\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).$$

where $\|\cdot\|_2$ is the matrix spectral norm (operator norm).

For any $X \in \mathbb{R}^{n \times d}$, $\|X\|_2 = \max_{z \in \mathbb{R}^d : \|z\|_2 = 1} \|Xz\|_2$.

For the stochastic block model application, we want to show that the second eigenvectors of A and $\mathbb{E}[A]$ are close. How does this relate to their difference in spectral norm?
Davis-Kahan Eigenvector Perturbation Theorem: Suppose $\mathbf{A}, \overline{\mathbf{A}} \in \mathbb{R}^{d \times d}$ are symmetric with $\|\mathbf{A} - \overline{\mathbf{A}}\|_2 \leq \epsilon$ and eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_d$ and $\overline{\mathbf{v}}_1, \overline{\mathbf{v}}_2, \ldots, \overline{\mathbf{v}}_d$. Letting $\theta(\mathbf{v}_i, \overline{\mathbf{v}}_i)$ denote the angle between \mathbf{v}_i and $\overline{\mathbf{v}}_i$, for all i:

$$\sin[\theta(\mathbf{v}_i, \overline{\mathbf{v}}_i)] \leq \frac{\epsilon}{\min_{j \neq i} |\lambda_i - \lambda_j|}$$

where $\lambda_1, \ldots, \lambda_d$ are the eigenvalues of $\overline{\mathbf{A}}$.

The errors get large if there’s eigenvalues with similar magnitudes.
Claim 1 (Matrix Concentration): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,

$$\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).$$

Claim 2 (Davis-Kahan): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,

$$\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|}.$$
Claim 1 (Matrix Concentration): For \(p \geq O\left(\frac{\log^4 n}{n}\right) \),
\[
\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).
\]

Claim 2 (Davis-Kahan): For \(p \geq O\left(\frac{\log^4 n}{n}\right) \),
\[
\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|}
\]

Recall: \(\mathbb{E}[A] \) has eigenvalues \(\lambda_1 = \frac{(p+q)n}{2}, \lambda_2 = \frac{(p-q)n}{2}, \lambda_i = 0 \) for \(i \geq 3 \).

A adjacency matrix of random stochastic block model graph. \(p \): connection probability within clusters. \(q < p \): connection probability between clusters. \(n \): number of nodes. \(v_2, \bar{v}_2 \): second eigenvectors of \(A \) and \(\mathbb{E}[A] \) respectively.
Claim 1 (Matrix Concentration): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,
\[\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}). \]

Claim 2 (Davis-Kahan): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,
\[\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|} \]

Recall: $\mathbb{E}[A]$ has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \geq 3$.
\[\min_{j \neq i} |\lambda_i - \lambda_j| = \min \left(qn, \frac{(p-q)n}{2} \right). \]

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q < p$: connection probability between clusters. n: number of nodes. v_2, \bar{v}_2: second eigenvectors of A and $\mathbb{E}[A]$ respectively.
Claim 1 (Matrix Concentration): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,

$$\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).$$

Claim 2 (Davis-Kahan): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,

$$\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i}|\lambda_i - \lambda_j|}.$$

Recall: $\mathbb{E}[A]$ has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \geq 3$.

$$\min_{j \neq i}|\lambda_i - \lambda_j| = \min\left(qn, \frac{(p-q)n}{2}\right).$$

Typically, $\frac{(p-q)n}{2}$ will be the minimum of these two gaps.
Claim 1 (Matrix Concentration): For \(p \geq O\left(\frac{\log^4 n}{n}\right) \),

\[\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}). \]

Claim 2 (Davis-Kahan): For \(p \geq O\left(\frac{\log^4 n}{n}\right) \),

\[\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|} \leq \frac{O(\sqrt{pn})}{(p - q)n/2} = O\left(\frac{\sqrt{p}}{(p - q)\sqrt{n}}\right) \]

Recall: \(\mathbb{E}[A] \) has eigenvalues \(\lambda_1 = \frac{(p+q)n}{2}, \lambda_2 = \frac{(p-q)n}{2}, \lambda_i = 0 \) for \(i \geq 3 \).

\[\min_{j \neq i} |\lambda_i - \lambda_j| = \min \left(qn, \frac{(p-q)n}{2} \right). \]

Typically, \(\frac{(p-q)n}{2} \) will be the minimum of these two gaps.
So Far: \(\sin \theta(v_2, \bar{v}_2) \leq O \left(\frac{\sqrt{p}}{(p-q)\sqrt{n}} \right) \).

\(A \): adjacency matrix of random stochastic block model graph. \(p \): connection probability within clusters. \(q < p \): connection probability between clusters. \(n \): number of nodes. \(v_2, \bar{v}_2 \): second eigenvectors of \(A \) and \(\mathbb{E}[A] \) respectively.
So Far: \(\sin \theta(v_2, \bar{v}_2) \leq O \left(\frac{\sqrt{p}}{(p-q)\sqrt{n}} \right) \). What does this give us?

- Can show that this implies \(\|v_2 - \bar{v}_2\|_2^2 \leq O \left(\frac{p}{(p-q)^2 n} \right) \) (exercise).
So Far: $\sin \theta (v_2, \bar{v}_2) \leq O \left(\frac{\sqrt{p}}{(p-q)\sqrt{n}} \right)$. What does this give us?

- Can show that this implies $\|v_2 - \bar{v}_2\|_2^2 \leq O \left(\frac{p}{(p-q)^2 n} \right)$ (exercise).
- \bar{v}_2 is $\frac{1}{\sqrt{n}} \chi_{B,C}$: the community indicator vector.

\bar{v}_2 is the community indicator vector.

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q < p$: connection probability between clusters. n: number of nodes. v_2, \bar{v}_2: second eigenvectors of A and $E[A]$ respectively.
application to stochastic block model

So Far: \(\sin \theta(v_2, \bar{v}_2) \leq O \left(\frac{\sqrt{p}}{(p-q)\sqrt{n}} \right) \). What does this give us?

- Can show that this implies \(\|v_2 - \bar{v}_2\|_2^2 \leq O \left(\frac{p}{(p-q)^2 n} \right) \) (exercise).
- \(\bar{v}_2 \) is \(\frac{1}{\sqrt{n}} \chi_{B,C} \): the community indicator vector.
- Every \(i \) where \(v_2(i), \bar{v}_2(i) \) differ in sign contributes \(\geq \frac{1}{n} \) to \(\|v_2 - \bar{v}_2\|_2^2 \).

\[\begin{pmatrix} 1/\sqrt{n} & 1/\sqrt{n} & 1/\sqrt{n} & 1/\sqrt{n} & 1/\sqrt{n} & 1/\sqrt{n} & 1/\sqrt{n} \end{pmatrix} \]

- \(A \) adjacency matrix of random stochastic block model graph. \(p \): connection probability within clusters. \(q < p \): connection probability between clusters. \(n \): number of nodes. \(v_2, \bar{v}_2 \): second eigenvectors of \(A \) and \(\mathbb{E}[A] \) respectively.
So Far: $\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$. What does this give us?

- Can show that this implies $\|v_2 - \bar{v}_2\|_2^2 \leq O\left(\frac{p}{(p-q)^2 n}\right)$ (exercise).
- \bar{v}_2 is $\frac{1}{\sqrt{n}} \chi_{B,C}$: the community indicator vector.
- Every i where $v_2(i), \bar{v}_2(i)$ differ in sign contributes $\geq \frac{1}{n}$ to $\|v_2 - \bar{v}_2\|_2^2$.
- So they differ in sign in at most $O\left(\frac{p}{(p-q)^2}\right)$ positions.

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q < p$: connection probability between clusters. n: number of nodes. v_2, \bar{v}_2: second eigenvectors of A and $E[A]$ respectively.
Upshot: If G is a stochastic block model graph with adjacency matrix A, if we compute its second large eigenvector v_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ nodes.