COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 19
Last Class: Spectral Clustering

• Spectral clustering: finding good cuts via Laplacian eigenvectors.
Summary

Last Class: Spectral Clustering

- Spectral clustering: finding good cuts via Laplacian eigenvectors.

This Class: Stochastic Block Model

- Stochastic block model: A simple clustered graph model where we can prove the effectiveness of spectral clustering.
- Prove that clustering with the Laplacian eigenvectors (spectral clustering) finds communities in the stochastic block model.
For a graph with adjacency matrix A and degree matrix D, $L = D - A$ is the graph Laplacian.

How smooth any vector \vec{v} is over the graph can be measured by:

$$\sum_{(i,j) \in E} (\vec{v}(i) - \vec{v}(j))^2 = \vec{v}^T L \vec{v}.$$

- The second smallest eigenvector \vec{v}_{n-1} of L, minimizes $\vec{v}_{n-1}^T L \vec{v}_{n-1}$ subject to $\vec{v}_{n-1}^T \vec{1} = 0$.
- By thresholding this vector, we tend to find small cuts ($\vec{v}_{n-1}^T L \vec{v}_{n-1}$ is small), that are well-balanced ($\vec{v}_{n-1}^T \vec{1} = 0$).
Find a good partition of the graph by computing

$$\vec{v}_{n-1} = \arg \min_{\vec{v} \in \mathbb{R}^d \text{ with } \|\vec{v}\|=1, \vec{v}^T \vec{1}=0} \vec{v}^T L \vec{v}$$

Let S be nodes with $\vec{v}_{n-1}(i) < 0$, T be nodes with $\vec{v}_{n-1}(i) \geq 0$.
Find a good partition of the graph by computing

\[\vec{v}_{n-1} = \arg \min_{\vec{v} \in \mathbb{R}^d \text{with } \|\vec{v}\|=1, \vec{v}^T \vec{1} = 0} \vec{v}^T L \vec{v} \]

Let \(S \) be nodes with \(\vec{v}_{n-1}(i) < 0 \), \(T \) be nodes with \(\vec{v}_{n-1}(i) \geq 0 \).
The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

n: number of nodes in graph, $A \in \mathbb{R}^{n \times n}$: adjacency matrix, $D \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L = A - D$.
SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2} LD^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

n: number of nodes in graph, $A \in \mathbb{R}^{n \times n}$: adjacency matrix, $D \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L = A - D$.
The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

n: number of nodes in graph, $A \in \mathbb{R}^{n \times n}$: adjacency matrix, $D \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L = A - D$.
The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\bar{L} = D^{-1/2}LD^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

- Compute smallest k nonzero eigenvectors $\tilde{v}_{n-1}, \ldots, \tilde{v}_{n-k}$ of \bar{L}.

n: number of nodes in graph, $A \in \mathbb{R}^{n \times n}$: adjacency matrix, $D \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L = A - D$.

4
SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian \(\bar{L} = D^{-1/2}LD^{-1/2} \).

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

- Compute smallest \(k \) nonzero eigenvectors \(\vec{v}_{n-1}, \ldots, \vec{v}_{n-k} \) of \(\bar{L} \).
- Represent each node by its corresponding row in \(V \in \mathbb{R}^{n \times k} \) whose columns are \(\vec{v}_{n-1}, \ldots \vec{v}_{n-k} \).

Notes:

- \(n \): number of nodes in graph, \(A \in \mathbb{R}^{n \times n} \): adjacency matrix, \(D \in \mathbb{R}^{n \times n} \): diagonal degree matrix, \(L \in \mathbb{R}^{n \times n} \): Laplacian matrix \(L = A - D \).
The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

Important Consideration: What to do when we want to split the graph into more than two parts?

Spectral Clustering:

- Compute smallest k nonzero eigenvectors $\vec{v}_{n-1}, \ldots, \vec{v}_{n-k}$ of \overline{L}.
- Represent each node by its corresponding row in $V \in \mathbb{R}^{n \times k}$ whose columns are $\vec{v}_{n-1}, \ldots, \vec{v}_{n-k}$.
- Cluster these rows using k-means clustering (or really any clustering method).

n: number of nodes in graph, $A \in \mathbb{R}^{n \times n}$: adjacency matrix, $D \in \mathbb{R}^{n \times n}$: diagonal degree matrix, $L \in \mathbb{R}^{n \times n}$: Laplacian matrix $L = A - D$.
So Far: Argued that spectral clustering partitions a graph, along a small cut that separates the graph into large pieces.
So Far: Argued that spectral clustering partitions a graph, along a small cut that separates the graph into large pieces.

• Haven’t given formal guarantees on ‘quality’ of the partitioning.
So Far: Argued that spectral clustering partitions a graph, along a small cut that separates the graph into large pieces.

- Haven’t given formal guarantees on ‘quality’ of the partitioning.
- This is difficult to do for general input graphs.
So Far: Argued that spectral clustering partitions a graph, along a small cut that separates the graph into large pieces.

- Haven’t given formal guarantees on ‘quality’ of the partitioning.
- This is difficult to do for general input graphs.

Common Approach: Give a natural generative model for random inputs and analyze how the algorithm performs on inputs drawn from this model.
So Far: Argued that spectral clustering partitions a graph, along a small cut that separates the graph into large pieces.

- Haven’t given formal guarantees on ‘quality’ of the partitioning.
- This is difficult to do for general input graphs.

Common Approach: Give a natural generative model for random inputs and analyze how the algorithm performs on inputs drawn from this model.

- Very common in algorithm design for data analysis/machine learning (can be used to justify ℓ_2 linear regression, k-means clustering, PCA, etc.)
Stochastic Block Model (Planted Partition Model): Let $G_n(p, q)$ be a distribution over graphs on n nodes, split randomly into two groups B and C, each with $n/2$ nodes.

- Any two nodes in the same group are connected with probability p (including self-loops).
- Any two nodes in different groups are connected with prob. $q < p$.
- Connections are independent.
LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from $G_n(p, q)$.

- Let $A \in \mathbb{R}^{n \times n}$ be the adjacency matrix of G, ordered in terms of group ID.

$G_n(p, q)$: stochastic block model distribution. B, C: groups with $n/2$ nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.
Letting G be a stochastic block model graph drawn from $G_n(p, q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i,j} = p$ for i, j in same group, $(\mathbb{E}[\mathbf{A}])_{i,j} = q$ otherwise.

$G_n(p, q)$: stochastic block model distribution. B, C: groups with $n/2$ nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.
Letting G be a stochastic block model graph drawn from $G_n(p, q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i,j} = p$ for i, j in same group, $(\mathbb{E}[\mathbf{A}])_{i,j} = q$ otherwise.

What is rank($\mathbb{E}[\mathbf{A}]$)?
What are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{A}]$?

$G_n(p, q)$: stochastic block model distribution. B, C: groups with $n/2$ nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.
Letting G be a stochastic block model graph drawn from $G_n(p, q)$ and $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix, what are the eigenvectors and eigenvalues of $\mathbb{E}[A]$?
If we compute \vec{v}_2 then we recover the communities B and C!
If we compute \vec{v}_2 then we recover the communities B and C!

- Can show that for $G \sim G_n(p, q)$, A is close to $E[A]$ with high probability (matrix concentration inequality).
- Thus, the true second eigenvector of A is close to $[1, 1, 1, \ldots, -1, -1, -1]$ and gives a good estimate of the communities.
Goal is to recover communities – so adjacency matrix won’t be ordered in terms of community ID (or our job is already done!)
Goal is to recover communities – so adjacency matrix won’t be ordered in terms of community ID (or our job is already done!)

- Actual adjacency matrix is PAP^T where P is a random permutation matrix and A is the ordered adjacency matrix.
- **Exercise:** The first two eigenvectors of PAP^T are $P\vec{v}_1$ and $P\vec{v}_2$.
- $P\vec{v}_2 = [1, -1, 1, -1, \ldots, 1, 1, -1]$ gives community ids.
Letting G be a stochastic block model graph drawn from $G_n(p, q)$, $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix and L be its Laplacian, what is $E[L]$?
Letting G be a stochastic block model graph drawn from $G_n(p, q)$, $A \in \mathbb{R}^{n \times n}$ be its adjacency matrix and L be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[L]$?
Upshot: The second smallest eigenvector of $\mathbb{E}[L]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.
Upshot: The second smallest eigenvector of $\mathbb{E}[L]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.

- If the random graph G (equivalently A and L) were exactly equal to its expectation, partitioning using this eigenvector (i.e., *spectral clustering*) would exactly recover the two communities B and C.

EXPECTED LAPLACIAN SPECTRUM

How do we show that a matrix (e.g., A) is close to its expectation?

- Matrix concentration inequalities.
- Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.
- Random matrix theory is a very recent and cutting edge subfield of mathematics that is being actively applied in computer science, statistics, and ML.
Upshot: The second smallest eigenvector of $\mathbb{E}[\mathbf{L}]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.

- If the random graph G (equivalently \mathbf{A} and \mathbf{L}) were exactly equal to its expectation, partitioning using this eigenvector (i.e., *spectral clustering*) would exactly recover the two communities B and C.

How do we show that a matrix (e.g., \mathbf{A}) is close to its expectation?

Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.
- Random matrix theory is a very recent and cutting edge subfield of mathematics that is being actively applied in computer science, statistics, and ML.
Matrix Concentration Inequality: If $p \geq O\left(\frac{\log^4 n}{n}\right)$, then with high probability

$$\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).$$

where $\| \cdot \|_2$ is the matrix spectral norm (operator norm).

For any $X \in \mathbb{R}^{n \times d}$, $\|X\|_2 = \max_{z \in \mathbb{R}^d : \|z\|_2 = 1} \|Xz\|_2$.
Matrix Concentration Inequality: If \(p \geq O \left(\frac{\log^4 n}{n} \right) \), then with high probability

\[
\| A - E[A] \|_2 \leq O(\sqrt{pn}).
\]

where \(\| \cdot \|_2 \) is the matrix spectral norm (operator norm).

For any \(X \in \mathbb{R}^{n \times d} \), \(\| X \|_2 = \max_{z \in \mathbb{R}^d : \| z \|_2 = 1} \| Xz \|_2 \).

For the stochastic block model application, we want to show that the second eigenvectors of \(A \) and \(E[A] \) are close. How does this relate to their difference in spectral norm?
Davis-Kahan Eigenvector Perturbation Theorem: Suppose $A, \overline{A} \in \mathbb{R}^{d \times d}$ are symmetric with $\|A - \overline{A}\|_2 \leq \epsilon$ and eigenvectors v_1, v_2, \ldots, v_d and $\overline{v}_1, \overline{v}_2, \ldots, \overline{v}_d$. Letting $\theta(v_i, \overline{v}_i)$ denote the angle between v_i and \overline{v}_i, for all i:

$$\sin[\theta(v_i, \overline{v}_i)] \leq \frac{\epsilon}{\min_{j \neq i} |\lambda_i - \lambda_j|}$$

where $\lambda_1, \ldots, \lambda_d$ are the eigenvalues of \overline{A}.

The errors get large if there are eigenvalues with similar magnitudes.
Claim 1 (Matrix Concentration): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,

\[\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}). \]

Claim 2 (Davis-Kahan): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,

\[\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|} \]

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q < p$: connection probability between clusters. n: number of nodes. v_2, \bar{v}_2: second eigenvectors of A and $\mathbb{E}[A]$ respectively.
Claim 1 (Matrix Concentration): For $p \geq O \left(\frac{\log^4 n}{n} \right)$,

$$\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).$$

Claim 2 (Davis-Kahan): For $p \geq O \left(\frac{\log^4 n}{n} \right)$,

$$\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|}$$

Recall: $\mathbb{E}[A]$ has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \geq 3$.

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q < p$: connection probability between clusters. n: number of nodes. v_2, \bar{v}_2: second eigenvectors of A and $\mathbb{E}[A]$ respectively.
Claim 1 (Matrix Concentration): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,

$$\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).$$

Claim 2 (Davis-Kahan): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,

$$\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|}$$

Recall: $\mathbb{E}[A]$ has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \geq 3$.

$$\min_{j \neq i} |\lambda_i - \lambda_j| = \min\left(qn, \frac{(p-q)n}{2}\right).$$

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q < p$: connection probability between clusters. n: number of nodes. v_2, \bar{v}_2: second eigenvectors of A and $\mathbb{E}[A]$ respectively.
Claim 1 (Matrix Concentration): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,

$$\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn}).$$

Claim 2 (Davis-Kahan): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,

$$\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|}.$$

Recall: $\mathbb{E}[A]$ has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \geq 3$.

$$\min_{j \neq i} |\lambda_i - \lambda_j| = \min \left(\frac{(p-q)n}{2}, qn\right).$$

Typically, $\frac{(p-q)n}{2}$ will be the minimum of these two gaps.
Claim 1 (Matrix Concentration): For \(p \geq O \left(\frac{\log^4 n}{n} \right) \),
\[
\| A - \mathbb{E}[A] \|_2 \leq O(\sqrt{pn}).
\]

Claim 2 (Davis-Kahan): For \(p \geq O \left(\frac{\log^4 n}{n} \right) \),
\[
\sin \theta(v_2, \bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j \neq i} |\lambda_i - \lambda_j|} \leq \frac{O(\sqrt{pn})}{(p - q)n/2} = O \left(\frac{\sqrt{p}}{(p - q)\sqrt{n}} \right)
\]

Recall: \(\mathbb{E}[A] \) has eigenvalues \(\lambda_1 = \frac{(p+q)n}{2} \), \(\lambda_2 = \frac{(p-q)n}{2} \), \(\lambda_i = 0 \) for \(i \geq 3 \).
\[
\min_{j \neq i} |\lambda_i - \lambda_j| = \min \left(qn, \frac{(p-q)n}{2} \right).
\]

Typically, \(\frac{(p-q)n}{2} \) will be the minimum of these two gaps.
So Far: $\sin \theta(v_2, \bar{v}_2) \leq O \left(\frac{\sqrt{p}}{(p-q)\sqrt{n}} \right)$.
APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: \(\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)\). What does this give us?

- Can show that this implies \(\|v_2 - \bar{v}_2\|_2^2 \leq O\left(\frac{p}{(p-q)^2n}\right)\) (exercise).

A adjacency matrix of random stochastic block model graph. \(p\): connection probability within clusters. \(q < p\): connection probability between clusters. \(n\): number of nodes. \(v_2, \bar{v}_2\): second eigenvectors of **A** and \(\mathbb{E}[A]\) respectively.
APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: \(\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right) \). What does this give us?

- Can show that this implies \(\|v_2 - \bar{v}_2\|^2_2 \leq O\left(\frac{p}{(p-q)^2n}\right) \) (exercise).
- \(\bar{v}_2 \) is \(\frac{1}{\sqrt{n}} \chi_{B,C} \): the community indicator vector.

A adjacency matrix of random stochastic block model graph. \(p \): connection probability within clusters. \(q < p \): connection probability between clusters. \(n \): number of nodes. \(v_2, \bar{v}_2 \): second eigenvectors of \(A \) and \(\mathbb{E}[A] \) respectively.
APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: \(\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right) \). What does this give us?

- Can show that this implies \(\|v_2 - \bar{v}_2\|_2^2 \leq O\left(\frac{p}{(p-q)^2 n}\right) \) (exercise).
- \(\bar{v}_2 \) is \(\frac{1}{\sqrt{n}} \chi_{B,C} \): the community indicator vector.
- Every \(i \) where \(v_2(i), \bar{v}_2(i) \) differ in sign contributes \(\geq \frac{1}{n} \) to \(\|v_2 - \bar{v}_2\|_2^2 \).

\[\begin{array}{cccccccc}
\frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & -\frac{1}{\sqrt{n}} & -\frac{1}{\sqrt{n}} & -\frac{1}{\sqrt{n}} & -\frac{1}{\sqrt{n}} \\
\end{array} \]

B (n/2 nodes) \hspace{1cm} C (n/2 nodes)

\(\bar{v}_2 \)

A adjacency matrix of random stochastic block model graph. \(p \): connection probability within clusters. \(q < p \): connection probability between clusters. \(n \): number of nodes. \(v_2, \bar{v}_2 \): second eigenvectors of \(A \) and \(\mathbb{E}[A] \) respectively.
APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: \(\sin \theta(v_2, \bar{v}_2) \leq O \left(\frac{\sqrt{p}}{(p-q)\sqrt{n}} \right) \). What does this give us?

- Can show that this implies \(\|v_2 - \bar{v}_2\|^2 \leq O \left(\frac{p}{(p-q)^2 n} \right) \) (exercise).
- \(\bar{v}_2 \) is \(\frac{1}{\sqrt{n}} \chi_{B,C} \): the community indicator vector.

\[
\begin{array}{cccccccc}
\frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} \\
\end{array}
\]

- Every \(i \) where \(v_2(i) \), \(\bar{v}_2(i) \) differ in sign contributes \(\geq \frac{1}{n} \) to \(\|v_2 - \bar{v}_2\|^2 \).
- So they differ in sign in at most \(O \left(\frac{p}{(p-q)^2} \right) \) positions.

A adjacency matrix of random stochastic block model graph. \(p \): connection probability within clusters. \(q < p \): connection probability between clusters. \(n \): number of nodes. \(v_2, \bar{v}_2 \): second eigenvectors of \(A \) and \(\mathbb{E}[A] \) respectively.
Upshot: If G is a stochastic block model graph with adjacency matrix A, if we compute its second large eigenvector v_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ nodes.