• Problem Set 2 was due yesterday.
• The midterm exam will be held next Tuesday-Wednesday. Let me know ASAP if you have accommodations (e.g., extended time) via Disability Services.
Last Class: The Johnson-Lindenstrauss Lemma

- Low-distortion embeddings for any set of points via random projection.
- Started on proof of the JL Lemma via the Distributional JL Lemma.
Last Class: The Johnson-Lindenstrauss Lemma

• Low-distortion embeddings for any set of points via random projection.
• Started on proof of the JL Lemma via the Distributional JL Lemma.

This Class:

• Finish Up proof of the JL lemma.
• Example applications to classification and clustering.
• Discuss connections to high dimensional geometry.
Johnson-Lindenstrauss Lemma: For any set of points \(\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d \) and \(\epsilon > 0 \) there exists a linear map \(\Pi : \mathbb{R}^d \rightarrow \mathbb{R}^m \) such that \(m = O \left(\frac{\log n}{\epsilon^2} \right) \) and letting \(\tilde{x}_i = \Pi \vec{x}_i \):

For all \(i, j : (1 - \epsilon) \| \vec{x}_i - \vec{x}_j \|_2 \leq \| \tilde{x}_i - \tilde{x}_j \|_2 \leq (1 + \epsilon) \| \vec{x}_i - \vec{x}_j \|_2 \).

Further, if \(\Pi \in \mathbb{R}^{m \times d} \) has each entry chosen i.i.d. from \(\mathcal{N}(0, 1/m) \) and \(m = O \left(\frac{\log n/\delta}{\epsilon^2} \right) \), \(\Pi \) satisfies the guarantee with probability \(\geq 1 - \delta \).
Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\Pi : \mathbb{R}^d \to \mathbb{R}^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = \Pi \vec{x}_i$:

For all i, j:

$$(1 - \epsilon)\|\vec{x}_i - \vec{x}_j\|_2 \leq \|\tilde{x}_i - \tilde{x}_j\|_2 \leq (1 + \epsilon)\|\vec{x}_i - \vec{x}_j\|_2.$$

Further, if $\Pi \in \mathbb{R}^{m \times d}$ has each entry chosen i.i.d. from $\mathcal{N}(0, 1/m)$ and $m = O\left(\frac{\log n/\delta}{\epsilon^2}\right)$, Π satisfies the guarantee with probability $\geq 1 - \delta$.

![Diagram](image.png)
We showed that the Johnson-Lindenstrauss Lemma follows from:

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O \left(\frac{\log(1/\delta)}{\epsilon^2} \right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

\[(1 - \epsilon)\|\vec{y}\|_2 \leq \|\Pi \vec{y}\|_2 \leq (1 + \epsilon)\|\vec{y}\|_2.\]
We showed that the Johnson-Lindenstrauss Lemma follows from:

Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$
(1 - \epsilon)\|\vec{y}\|_2 \leq \|\Pi \vec{y}\|_2 \leq (1 + \epsilon)\|\vec{y}\|_2.
$$

Main Idea: Union bound over $\binom{n}{2}$ difference vectors $\vec{y}_{ij} = \vec{x}_i - \vec{x}_j$.
Distributional JL Lemma: Let \(\Pi \in \mathbb{R}^{m \times d} \) have each entry chosen i.i.d. as \(\mathcal{N}(0, 1/m) \). If we set \(m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right) \), then for any \(\vec{y} \in \mathbb{R}^d \), with probability \(\geq 1 - \delta \)

\[
(1 - \epsilon)\|\vec{y}\|_2 \leq \|\Pi\vec{y}\|_2 \leq (1 + \epsilon)\|\vec{y}\|_2.
\]

\(\vec{y} \in \mathbb{R}^d \): arbitrary vector, \(y \in \mathbb{R}^m \): compressed vector, \(\Pi \in \mathbb{R}^{m \times d} \): random projection. \(d \): original dim. \(m \): compressed dim, \(\epsilon \): error, \(\delta \): failure prob.
Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$(1 - \epsilon)\|\vec{y}\|_2 \leq \|\Pi \vec{y}\|_2 \leq (1 + \epsilon)\|\vec{y}\|_2.$$

- Let y denote $\Pi \vec{y}$ and let $\Pi(j)$ denote the j^{th} row of Π.

\[\vec{y} \in \mathbb{R}^d: \text{arbitrary vector}, \ y \in \mathbb{R}^m: \text{compressed vector}, \ \Pi \in \mathbb{R}^{m \times d}: \text{random projection.} \ d: \text{original dim.} \ m: \text{compressed dim,} \ \epsilon: \text{error,} \ \delta: \text{failure prob.}\]
Distributional JL Lemma: Let \(\Pi \in \mathbb{R}^{m \times d} \) have each entry chosen i.i.d. as \(\mathcal{N}(0, 1/m) \). If we set \(m = \mathcal{O}\left(\frac{\log(1/\delta)}{\epsilon^2}\right) \), then for any \(\bar{y} \in \mathbb{R}^d \), with probability \(\geq 1 - \delta \)

\[
(1 - \epsilon) \|\bar{y}\|_2 \leq \|\Pi \bar{y}\|_2 \leq (1 + \epsilon) \|\bar{y}\|_2.
\]

- Let \(y \) denote \(\Pi \bar{y} \) and let \(\Pi(j) \) denote the \(j^{th} \) row of \(\Pi \).
- For any \(j \), \(y(j) = \langle \Pi(j), \bar{y} \rangle \).

\(\bar{y} \in \mathbb{R}^d \): arbitrary vector, \(y \in \mathbb{R}^m \): compressed vector, \(\Pi \in \mathbb{R}^{m \times d} \): random projection. \(d \): original dim. \(m \): compressed dim, \(\epsilon \): error, \(\delta \): failure prob.
Distributional JL Lemma: Let \(\Pi \in \mathbb{R}^{m \times d} \) have each entry chosen i.i.d. as \(\mathcal{N}(0, 1/m) \). If we set \(m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right) \), then for any \(\vec{y} \in \mathbb{R}^d \), with probability \(\geq 1 - \delta \)

\[
(1 - \epsilon)\|\vec{y}\|_2 \leq \|\Pi \vec{y}\|_2 \leq (1 + \epsilon)\|\vec{y}\|_2.
\]

- Let \(y \) denote \(\Pi \vec{y} \) and let \(\Pi(j) \) denote the \(j \)th row of \(\Pi \).
- For any \(j \), \(y(j) = \langle \Pi(j), \vec{y} \rangle \).

\(\vec{y} \in \mathbb{R}^d \): arbitrary vector, \(y \in \mathbb{R}^m \): compressed vector, \(\Pi \in \mathbb{R}^{m \times d} \): random projection. \(d \): original dim. \(m \): compressed dim, \(\epsilon \): error, \(\delta \): failure prob.
Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

\[(1 - \epsilon)\|\vec{y}\|_2 \leq \|\Pi \vec{y}\|_2 \leq (1 + \epsilon)\|\vec{y}\|_2.\]

- Let y denote $\Pi \vec{y}$ and let $\Pi(j)$ denote the j^{th} row of Π.
- For any j, $y(j) = \langle \Pi(j), \vec{y} \rangle = \sum_{i=1}^{d} g_i \cdot \vec{y}(i)$ where $g_i \sim \mathcal{N}(0, 1/m)$.

$\vec{y} \in \mathbb{R}^d$: arbitrary vector, $y \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection. d: original dim. m: compressed dim, ϵ: error, δ: failure prob.
Distributional JL Lemma: Let $\Pi \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

$$ (1 - \epsilon)\|\vec{y}\|_2 \leq \|\Pi \vec{y}\|_2 \leq (1 + \epsilon)\|\vec{y}\|_2. $$

- Let y denote $\Pi \vec{y}$ and let $\Pi(j)$ denote the j^{th} row of Π.
- For any j, $y(j) = \langle \Pi(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \vec{y}(i)$ where $g_i \sim \mathcal{N}(0, 1)$.

$\vec{y} \in \mathbb{R}^d$: arbitrary vector, $y \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection. d: original dim. m: compressed dim, ϵ: error, δ: failure prob.
Let y denote $\Pi \tilde{y}$ and let $\Pi(j)$ denote the j^{th} row of Π.

For any j, $y(j) = \langle \Pi(j), \tilde{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \tilde{y}(i)$ where $g_i \sim \mathcal{N}(0, 1)$.
• Let \mathbf{y} denote $\Pi\vec{y}$ and let $\Pi(j)$ denote the j^{th} row of Π.
• For any j, $\mathbf{y}(j) = \langle \Pi(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.
• $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2)$: a normal distribution with variance $\vec{y}(i)^2$.

$\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\mathbf{y} \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \mathbf{y}$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, \mathbf{g}_i: normally distributed random variable.
• Let \mathbf{y} denote $\mathbf{\Pi} \vec{y}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.

• For any j, $\mathbf{y}(j) = \langle \mathbf{\Pi}(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \vec{y}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.

• $\mathbf{g}_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2)$: a normal distribution with variance $\vec{y}(i)^2$.

$\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\mathbf{y} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \mathbf{y}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_i: normally distributed random variable.
• Let \mathbf{y} denote $\mathbf{\Pi}\mathbf{\tilde{y}}$ and let $\mathbf{\Pi}(j)$ denote the j^{th} row of $\mathbf{\Pi}$.
• For any j, $\mathbf{y}(j) = \langle \mathbf{\Pi}(j), \mathbf{\tilde{y}} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \mathbf{\tilde{y}}(i)$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1)$.
• $\mathbf{g}_i \cdot \mathbf{\tilde{y}}(i) \sim \mathcal{N}(0, \mathbf{\tilde{y}}(i)^2)$: a normal distribution with variance $\mathbf{\tilde{y}}(i)^2$.

$$\mathbf{\tilde{y}}(j) = \frac{1}{\sqrt{m}} [\mathbf{g}_1 \cdot \mathbf{y}(1) + \mathbf{g}_2 \cdot \mathbf{y}(2) + \ldots + \mathbf{g}_n \cdot \mathbf{y}(d)]$$

$\mathbf{\tilde{y}} \in \mathbb{R}^d$: arbitrary vector, $\mathbf{y} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\mathbf{\tilde{y}} \rightarrow \mathbf{y}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, \mathbf{g}_i: normally distributed random variable.
Let \(y \) denote \(\Pi \vec{y} \) and let \(\Pi(j) \) denote the \(j^{th} \) row of \(\Pi \).

For any \(j \),
\[
y(j) = \langle \Pi(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \vec{y}(i) \text{ where } g_i \sim \mathcal{N}(0, 1).
\]

\(g_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2) \): a normal distribution with variance \(\vec{y}(i)^2 \).

\[
\vec{y}(j) = \frac{1}{\sqrt{m}} [g_1 \cdot y(1) + g_2 \cdot y(2) + \ldots + g_n \cdot y(d)]
\]

What is the distribution of \(y(j) \)?

\(\vec{y} \in \mathbb{R}^d \): arbitrary vector, \(y \in \mathbb{R}^m \): compressed vector, \(\Pi \in \mathbb{R}^{m \times d} \): random projection mapping \(\vec{y} \to y \). \(\Pi(j) \): \(j^{th} \) row of \(\Pi \), \(d \): original dimension. \(m \): compressed dimension, \(g_i \): normally distributed random variable.
Let \(y \) denote \(\Pi \vec{y} \) and let \(\Pi(j) \) denote the \(j^{th} \) row of \(\Pi \).

For any \(j \),
\[
y(j) = \langle \Pi(j), \vec{y} \rangle = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \vec{y}(i) \text{ where } g_i \sim \mathcal{N}(0, 1).
\]

\(g_i \cdot \vec{y}(i) \sim \mathcal{N}(0, \vec{y}(i)^2) \): a normal distribution with variance \(\vec{y}(i)^2 \).

\[
\vec{y}(j) = \frac{1}{\sqrt{m}} [g_1 \cdot y(1) + g_2 \cdot y(2) + ... + g_n \cdot y(d)]
\]

What is the distribution of \(y(j) \)? Also Gaussian!

\(\vec{y} \in \mathbb{R}^d \): arbitrary vector, \(y \in \mathbb{R}^m \): compressed vector, \(\Pi \in \mathbb{R}^{m \times d} \): random projection mapping \(\vec{y} \rightarrow y \). \(\Pi(j) \): \(j^{th} \) row of \(\Pi \), \(d \): original dimension. \(m \): compressed dimension, \(g_i \): normally distributed random variable.
Letting $\mathbf{y} = \Pi \bar{\mathbf{y}}$, we have $\mathbf{y}(j) = \langle \Pi(j), \bar{\mathbf{y}} \rangle$ and:

$$\mathbf{y}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \bar{\mathbf{y}}(i) \text{ where } g_i \cdot \bar{\mathbf{y}}(i) \sim \mathcal{N}(0, \bar{\mathbf{y}}(i)^2).$$

$\bar{\mathbf{y}} \in \mathbb{R}^d$: arbitrary vector, $\mathbf{y} \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\bar{\mathbf{y}} \rightarrow \mathbf{y}$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, g_i: normally distributed random variable.
Letting $\mathbf{y} = \Pi \tilde{\mathbf{y}}$, we have $\mathbf{y}(j) = \langle \Pi(j), \tilde{\mathbf{y}} \rangle$ and:

$$\mathbf{y}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \tilde{\mathbf{y}}(i) \text{ where } \mathbf{g}_i \cdot \tilde{\mathbf{y}}(i) \sim \mathcal{N}(0, \tilde{\mathbf{y}}(i)^2).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$
Letting $\mathbf{y} = \Pi \tilde{\mathbf{y}}$, we have $\mathbf{y}(j) = \langle \Pi(j), \tilde{\mathbf{y}} \rangle$ and:

$$\mathbf{y}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \tilde{\mathbf{y}}(i) \text{ where } \mathbf{g}_i \cdot \tilde{\mathbf{y}}(i) \sim \mathcal{N}(0, \tilde{\mathbf{y}}(i)^2).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

$\tilde{\mathbf{y}} \in \mathbb{R}^d$: arbitrary vector, $\mathbf{y} \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\tilde{\mathbf{y}} \rightarrow \mathbf{y}$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, \mathbf{g}_i: normally distributed random variable.
Letting $y = \Pi \bar{y}$, we have $y(j) = \langle \Pi(j), \bar{y} \rangle$ and:

$$y(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \bar{y}(i) \text{ where } g_i \cdot \bar{y}(i) \sim \mathcal{N}(0, \bar{y}(i)^2).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $y(j) \sim \frac{1}{\sqrt{m}} \mathcal{N}(0, \bar{y}(1)^2 + \bar{y}(2)^2 + \ldots + \bar{y}(d)^2)$

$\bar{y} \in \mathbb{R}^d$: arbitrary vector, $y \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\bar{y} \rightarrow y$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, g_i: normally distributed random variable.
Letting $\mathbf{y} = \Pi \mathbf{\bar{y}}$, we have $\mathbf{y}(j) = \langle \Pi(j), \mathbf{\bar{y}} \rangle$ and:

$$
\mathbf{y}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} \mathbf{g}_i \cdot \mathbf{\bar{y}}(i) \text{ where } \mathbf{g}_i \cdot \mathbf{\bar{y}}(i) \sim \mathcal{N}(0, \mathbf{\bar{y}}(i)^2).
$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$
a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)
$$

Thus, $\mathbf{y}(j) \sim \frac{1}{\sqrt{m}} \mathcal{N}(0, \|\mathbf{\bar{y}}\|_2^2)$

$\mathbf{\bar{y}} \in \mathbb{R}^d$: arbitrary vector, $\mathbf{y} \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\mathbf{\bar{y}} \rightarrow \mathbf{y}$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, \mathbf{g}_i: normally distributed random variable.
Letting $\mathbf{y} = \mathbf{\Pi}\tilde{\mathbf{y}}$, we have $\mathbf{y}(j) = \langle \mathbf{\Pi}(j), \tilde{\mathbf{y}} \rangle$ and:

$$\mathbf{y}(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \tilde{\mathbf{y}}(i) \text{ where } g_i \cdot \tilde{\mathbf{y}}(i) \sim \mathcal{N}(0, \tilde{\mathbf{y}}(i)^2).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Thus, $\mathbf{y}(j) \sim \mathcal{N}(0, \|\tilde{\mathbf{y}}\|_2^2/m)$.

\(\tilde{\mathbf{y}} \in \mathbb{R}^d: \) arbitrary vector, $\mathbf{y} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\tilde{\mathbf{y}} \rightarrow \mathbf{y}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, g_i: normally distributed random variable.
Letting \(y = \Pi \tilde{y} \), we have
\[
y(j) = \langle \Pi(j), \tilde{y} \rangle
\]
and:
\[
y(j) = \frac{1}{\sqrt{m}} \sum_{i=1}^{d} g_i \cdot \tilde{y}(i)
\]
where
\[
g_i \cdot \tilde{y}(i) \sim \mathcal{N}(0, \tilde{y}(i)^2).
\]

Stability of Gaussian Random Variables. For independent \(a \sim \mathcal{N}(\mu_1, \sigma_1^2) \) and \(b \sim \mathcal{N}(\mu_2, \sigma_2^2) \) we have:
\[
a + b \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)
\]
Thus,
\[
y(j) \sim \mathcal{N}(0, \|\tilde{y}\|_2^2/m).
\]
I.e., \(y \) itself is a random Gaussian vector.

Rotational invariance of the Gaussian distribution.

\(\tilde{y} \in \mathbb{R}^d \): arbitrary vector, \(y \in \mathbb{R}^m \): compressed vector, \(\Pi \in \mathbb{R}^{m \times d} \): random projection mapping \(\tilde{y} \rightarrow y \). \(\Pi(j) \): \(j \)th row of \(\Pi \), \(d \): original dimension. \(m \): compressed dimension, \(g_i \): normally distributed random variable
DISTRIBUTIONAL JL PROOF

So far: Letting $\mathbf{\Pi} \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $\mathbf{y} = \mathbf{\Pi}\vec{y}$:

$$y(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$$

$\vec{y} \in \mathbb{R}^d$: arbitrary vector, $\mathbf{y} \in \mathbb{R}^m$: compressed vector, $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow \mathbf{y}$. $\mathbf{\Pi}(j)$: j^{th} row of $\mathbf{\Pi}$, d: original dimension. m: compressed dimension, g_i: normally distributed random variable
DISTRIBUTIONAL JL PROOF

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\tilde{y} \in \mathbb{R}^d$, letting $y = \Pi \tilde{y}$:

$$y(j) \sim \mathcal{N}(0, \|\tilde{y}\|_2^2/m).$$

What is $\mathbb{E}[\|y\|_2^2]$?

$\tilde{y} \in \mathbb{R}^d$: arbitrary vector, $y \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\tilde{y} \rightarrow y$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, g_i: normally distributed random variable
So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\tilde{y} \in \mathbb{R}^d$, letting $y = \Pi \tilde{y}$:

$$y(j) \sim \mathcal{N}(0, \|\tilde{y}\|_2^2/m).$$

What is $\mathbb{E}[\|y\|_2^2]$?

$$\mathbb{E}[\|y\|_2^2] = \mathbb{E} \left[\sum_{j=1}^{m} y(j)^2 \right]$$

$\tilde{y} \in \mathbb{R}^d$: arbitrary vector, $y \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\tilde{y} \rightarrow y$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, g_i: normally distributed random variable
DISTRIBUTIONAL JL PROOF

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\tilde{y} \in \mathbb{R}^d$, letting $y = \Pi \tilde{y}$:

$$y(j) \sim \mathcal{N}(0, \|\tilde{y}\|_2^2/m).$$

What is $\mathbb{E}[\|y\|_2^2]$?

$$\mathbb{E}[\|y\|_2^2] = \mathbb{E} \left[\sum_{j=1}^{m} y(j)^2 \right] = \sum_{j=1}^{m} \mathbb{E}[y(j)^2]$$

$\tilde{y} \in \mathbb{R}^d$: arbitrary vector, $y \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\tilde{y} \rightarrow y$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, g_i: normally distributed random variable.
So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\tilde{y} \in \mathbb{R}^d$, letting $y = \Pi \tilde{y}$:

$$y(j) \sim \mathcal{N}(0, \|\tilde{y}\|_2^2 / m).$$

What is $\mathbb{E}[\|y\|_2^2]$?

$$\mathbb{E}[\|y\|_2^2] = \mathbb{E} \left[\sum_{j=1}^{m} y(j)^2 \right] = \sum_{j=1}^{m} \mathbb{E}[y(j)^2]$$

$\tilde{y} \in \mathbb{R}^d$: arbitrary vector, $y \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\tilde{y} \rightarrow y$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, g_i: normally distributed random variable.
DISTRIBUTIONAL JL PROOF

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\bar{y} \in \mathbb{R}^d$, letting $y = \Pi \bar{y}$:

$$y(j) \sim \mathcal{N}(0, \|\bar{y}\|_2^2 / m).$$

What is $\mathbb{E}[\|y\|_2^2]$?

$$\mathbb{E}[\|y\|_2^2] = \mathbb{E}[\sum_{j=1}^{m} y(j)^2] = \sum_{j=1}^{m} \mathbb{E}[y(j)^2]$$

$$= \sum_{j=1}^{m} \frac{\|\bar{y}\|_2^2}{m}$$

$\bar{y} \in \mathbb{R}^d$: arbitrary vector, $y \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\bar{y} \rightarrow y$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, g_i: normally distributed random variable.
So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\vec{y} \in \mathbb{R}^d$, letting $y = \Pi \vec{y}$:

$$y(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m).$$

What is $\mathbb{E}[\|y\|_2^2]$?

$$\mathbb{E}[\|y\|_2^2] = \mathbb{E}
\left[
\sum_{j=1}^{m} y(j)^2
\right] = \sum_{j=1}^{m} \mathbb{E}[y(j)^2]
= \sum_{j=1}^{m} \frac{\|\vec{y}\|_2^2}{m} = \|\vec{y}\|_2^2$$

$\vec{y} \in \mathbb{R}^d$: arbitrary vector, $y \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow y$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, g_i: normally distributed random variable
DISTRIBUTIONAL JL PROOF

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\tilde{y} \in \mathbb{R}^{d}$, letting $y = \Pi \tilde{y}$:

$$y(j) \sim \mathcal{N}(0, \|\tilde{y}\|_2^2/m).$$

What is $\mathbb{E}[\|y\|_2^2]$?

$$\mathbb{E}[\|y\|_2^2] = \mathbb{E}\left[\sum_{j=1}^{m} y(j)^2\right] = \sum_{j=1}^{m} \mathbb{E}[y(j)^2]$$

$$= \sum_{j=1}^{m} \frac{\|\tilde{y}\|_2^2}{m} = \|\tilde{y}\|_2^2$$

So y has the right norm in expectation.

$\tilde{y} \in \mathbb{R}^{d}$: arbitrary vector, $y \in \mathbb{R}^{m}$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\tilde{y} \rightarrow y$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, g_{ij}: normally distributed random variable.
DISTRIBUTIONAL JL PROOF

So far: Letting $\Pi \in \mathbb{R}^{d \times m}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$, for any $\tilde{y} \in \mathbb{R}^d$, letting $y = \Pi \tilde{y}$:

$$y(j) \sim \mathcal{N}(0, \|\tilde{y}\|_2^2/m).$$

What is $\mathbb{E}[\|y\|_2^2]$?

$$\mathbb{E}[\|y\|_2^2] = \mathbb{E} \left[\sum_{j=1}^{m} y(j)^2 \right] = \sum_{j=1}^{m} \mathbb{E}[y(j)^2] = \sum_{j=1}^{m} \frac{\|\tilde{y}\|_2^2}{m} = \|\tilde{y}\|_2^2$$

So y has the right norm in expectation.

How is $\|y\|_2^2$ distributed? Does it concentrate?

$\tilde{y} \in \mathbb{R}^d$: arbitrary vector, $y \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\tilde{y} \rightarrow y$. $\Pi(j)$: j^{th} row of Π, d: original dimension. m: compressed dimension, g_i: normally distributed random variable
So Far: Each entry of our compressed vector y is Gaussian with:

$$y(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$$

and

$$\mathbb{E}[\|y\|_2^2] = \|\vec{y}\|_2^2$$

$\vec{y} \in \mathbb{R}^d$: arbitrary vector, $y \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow y$. d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
So Far: Each entry of our compressed vector \mathbf{y} is Gaussian with:

$$y(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m) \quad \text{and} \quad \mathbb{E}[\|\mathbf{y}\|_2^2] = \|\vec{y}\|_2^2$$

$$\|\mathbf{y}\|_2^2 = \sum_{i=1}^{m} y(j)^2$$

a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)
So Far: Each entry of our compressed vector \mathbf{y} is Gaussian with:

$$y(j) \sim \mathcal{N}(0, \|\mathbf{y}\|_2^2/m)$$

and

$$\mathbb{E}[\|\mathbf{y}\|_2^2] = \|\mathbf{y}\|_2^2$$

$$\|\mathbf{y}\|_2^2 = \sum_{i=1}^{m} y(j)^2$$

a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

$\mathbf{y} \in \mathbb{R}^d$: arbitrary vector, $\mathbf{y} \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\mathbf{y} \rightarrow \mathbf{y}$. d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
So Far: Each entry of our compressed vector \mathbf{y} is Gaussian with:

$$y(j) \sim \mathcal{N}(0, \|\mathbf{y}\|_2^2/m) \text{ and } \mathbb{E}[\|\mathbf{y}\|_2^2] = \|\mathbf{y}\|_2^2$$

$$\|\mathbf{y}\|_2^2 = \sum_{i=1}^{m} y(j)^2$$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting \mathbf{Z} be a Chi-Squared random variable with m degrees of freedom,

$$\Pr[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \geq \epsilon \mathbb{E}\mathbf{Z}] \leq 2e^{-m\epsilon^2/8}.$$
So Far: Each entry of our compressed vector y is Gaussian with:

$$y(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m)$$

and

$$E[\|y\|_2^2] = \|\vec{y}\|_2^2$$

$$\|y\|_2^2 = \sum_{i=1}^{m} y(j)^2$$

is a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-Squared random variable with m degrees of freedom,

$$Pr[|Z - E[Z]| \geq \epsilon E[Z]] \leq 2e^{-m\epsilon^2/8}.$$

If we set $m = O \left(\frac{\log(1/\delta)}{\epsilon^2} \right)$, with probability $1 - O(e^{-\log(1/\delta)}) \geq 1 - \delta$:

$$(1 - \epsilon)\|\vec{y}\|_2^2 \leq \|y\|_2^2 \leq (1 + \epsilon)\|\vec{y}\|_2^2.$$

$\vec{y} \in \mathbb{R}^d$: arbitrary vector, $y \in \mathbb{R}^m$: compressed vector, $\Pi \in \mathbb{R}^{m \times d}$: random projection mapping $\vec{y} \rightarrow y$. d: original dimension. m: compressed dimension, ϵ: embedding error, δ: embedding failure prob.
So Far: Each entry of our compressed vector y is Gaussian with:

$$y(j) \sim \mathcal{N}(0, \|\vec{y}\|_2^2/m) \text{ and } \mathbb{E}[\|y\|_2^2] = \|\vec{y}\|_2^2$$

$$\|y\|_2^2 = \sum_{i=1}^{m} y(j)^2$$

a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-Squared random variable with m degrees of freedom,

$$\Pr[|Z - \mathbb{E}Z| \geq \epsilon \mathbb{E}Z] \leq 2e^{-m\epsilon^2/8}.$$

If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, with probability $1 - O(e^{-\log(1/\delta)}) \geq 1 - \delta$:

$$(1 - \epsilon)\|\vec{y}\|_2^2 \leq \|y\|_2^2 \leq (1 + \epsilon)\|\vec{y}\|_2^2.$$

Gives the distributional JL Lemma and thus the classic JL Lemma!
Goal: Separate n points in d dimensional space into k groups.
Goal: Separate n points in d dimensional space into k groups.

k-means Objective: $\text{Cost}(C_1, \ldots, C_k) = \min_{C_1, \ldots, C_k} \sum_{j=1}^{k} \sum_{\vec{x} \in C_k} \|\vec{x} - \mu_j\|^2_2$.
Example Application: *k*-Means Clustering

Goal: Separate \(n \) points in \(d \) dimensional space into \(k \) groups.

k-means Objective:

\[
\text{Cost}(C_1, \ldots, C_k) = \min_{C_1, \ldots, C_k} \sum_{j=1}^{k} \sum_{\vec{x} \in C_k} ||\vec{x} - \mu_j||^2.
\]

Write in terms of distances:

\[
\text{Cost}(C_1, \ldots, C_k) = \min_{C_1, \ldots, C_k} \sum_{j=1}^{k} \sum_{\vec{x}_1, \vec{x}_2 \in C_k} ||\vec{x}_1 - \vec{x}_2||^2
\]
k-means Objective: \(\text{Cost}(C_1, \ldots, C_k) = \min_{C_1, \ldots, C_k} \sum_{j=1}^{k} \sum_{\bar{x}_1, \bar{x}_2 \in C_k} \|\bar{x}_1 - \bar{x}_2\|_2^2\)
k-means Objective: \(\text{Cost}(C_1, \ldots, C_k) = \min_{C_1, \ldots, C_k} \sum_{j=1}^{k} \sum_{x_1, x_2 \in C_k} \|x_1 - x_2\|_2^2 \) If we randomly project to \(m = O\left(\frac{\log n}{\epsilon^2}\right) \) dimensions, for all pairs \(\vec{x}_1, \vec{x}_2 \),

\[(1 - \epsilon)\|\vec{x}_1 - \vec{x}_2\|_2^2 \leq \|\vec{x}_1 - \vec{x}_2\|_2^2 \leq (1 + \epsilon)\|\vec{x}_1 - \vec{x}_2\|_2^2 \]
k-means Objective: \(\text{Cost}(C_1, \ldots, C_k) = \min_{C_1, \ldots, C_k} \sum_{j=1}^{k} \sum_{\bar{x}_1, \bar{x}_2 \in C_k} \| \bar{x}_1 - \bar{x}_2 \|^2 \)

If we randomly project to \(m = O\left(\frac{\log n}{\epsilon^2} \right) \) dimensions, for all pairs \(\bar{x}_1, \bar{x}_2 \),

\[
(1 - \epsilon)\| \bar{x}_1 - \bar{x}_2 \|^2 \leq \| x_1 - x_2 \|^2 \leq (1 + \epsilon)\| \bar{x}_1 - \bar{x}_2 \|^2
\]

Letting \(\overline{\text{Cost}}(C_1, \ldots, C_k) = \min_{C_1, \ldots, C_k} \sum_{j=1}^{k} \sum_{x_1, x_2 \in C_k} \| x_1 - x_2 \|^2 \)

\[
(1 - \epsilon)\text{Cost}(C_1, \ldots, C_k) \leq \overline{\text{Cost}}(C_1, \ldots, C_k) \leq (1 + \epsilon)\text{Cost}(C_1, \ldots, C_k).
\]
k-means Objective: $\text{Cost}(C_1, \ldots, C_k) = \min_{C_1, \ldots, C_k} \sum_{j=1}^{k} \sum_{x_1, x_2 \in C_k} \|x_1 - x_2\|_2^2$

If we randomly project to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, for all pairs \bar{x}_1, \bar{x}_2,

$$(1 - \epsilon)\|x_1 - x_2\|_2^2 \leq \|\bar{x}_1 - \bar{x}_2\|_2^2 \leq (1 + \epsilon)\|x_1 - x_2\|_2^2 \implies$$

Letting $\overline{\text{Cost}}(C_1, \ldots, C_k) = \min_{C_1, \ldots, C_k} \sum_{j=1}^{k} \sum_{x_1, x_2 \in C_k} \|x_1 - x_2\|_2^2$

$$(1 - \epsilon)\text{Cost}(C_1, \ldots, C_k) \leq \overline{\text{Cost}}(C_1, \ldots, C_k) \leq (1 + \epsilon)\text{Cost}(C_1, \ldots, C_k).$$

Upshot: Can cluster in m dimensional space (much more efficiently) and minimize $\overline{\text{Cost}}(C_1, \ldots, C_k)$.
The Johnson-Lindenstrauss Lemma and High Dimensional Geometry
The Johnson-Lindenstrauss Lemma and High Dimensional Geometry

• High-dimensional Euclidean space looks *very different* from low-dimensional space. So how can JL work?
• Is Euclidean distance in high-dimensional meaningless, making JL useless? (The curse of dimensionality)
What is the largest set of mutually orthogonal unit vectors in d-dimensional space?

a) 1 b) $\log d$ c) \sqrt{d} d) d
What is the largest set of mutually orthogonal unit vectors in d-dimensional space?

a) 1
b) $\log d$
c) \sqrt{d}
d) d
What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \epsilon$? (think $\epsilon = .01$)

a) d b) $\Theta(d)$ c) $\Theta(d^2)$ d) $2^{\Theta(d)}$
What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$? (think $\epsilon = .01$)

a) d b) $\Theta(d)$ c) $\Theta(d^2)$ d) $2^{\Theta(d)}$
What is the largest set of unit vectors in d-dimensional space that have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$? (think $\epsilon = .01$)

a) d b) $\Theta(d)$ c) $\Theta(d^2)$ d) $2^{\Theta(d)}$

In fact, an exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!
Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$ (be nearly orthogonal).
Claim: \(2^{\Theta(\epsilon^2 d)}\) random \(d\)-dimensional unit vectors will have all pairwise dot products \(|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon\) (be nearly orthogonal).

Proof: Let \(\vec{x}_1, \ldots, \vec{x}_t\) each have independent random entries set to \(\pm 1/\sqrt{d}\).
Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$ (be nearly orthogonal).

Proof: Let $\vec{x}_1, \ldots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

- What is $\|\vec{x}_i\|_2$?
- What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$?
Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$ (be nearly orthogonal).

Proof: Let $\vec{x}_1, \ldots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

- **What is $\|\vec{x}_i\|_2$?** Every \vec{x}_i is always a unit vector.
- **What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$?**
Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$ (be nearly orthogonal).

Proof: Let $\vec{x}_1, \ldots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

- What is $\|\vec{x}_i\|_2$? Every \vec{x}_i is always a unit vector.
- What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$? $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 0$
Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$ (be nearly orthogonal).

Proof: Let $\vec{x}_1, \ldots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

- What is $\|\vec{x}_i\|_2$? Every \vec{x}_i is always a unit vector.
- What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$? $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 0$
- By a Chernoff bound, $\Pr[|\langle \vec{x}_i, \vec{x}_j \rangle| \geq \epsilon] \leq 2e^{-\epsilon^2 d/6}$ (great exercise).
Claim: $2^{\Theta(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle \vec{x}, \vec{y} \rangle| \leq \epsilon$ (be nearly orthogonal).

Proof: Let $\vec{x}_1, \ldots, \vec{x}_t$ each have independent random entries set to $\pm 1/\sqrt{d}$.

- What is $\|\vec{x}_i\|_2$? Every \vec{x}_i is always a unit vector.
- What is $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle]$? $\mathbb{E}[\langle \vec{x}_i, \vec{x}_j \rangle] = 0$
- By a Chernoff bound, $\Pr[|\langle \vec{x}_i, \vec{x}_j \rangle| \geq \epsilon] \leq 2e^{-\epsilon^2 d/6}$ (great exercise).
- If we chose $t = \frac{1}{2}e^{\epsilon^2 d/12}$, using a union bound over all $\binom{t}{2} \leq \frac{1}{8}e^{\epsilon^2 d/6}$ possible pairs, with probability $\geq 3/4$ all will be nearly orthogonal.
Up Shot: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$).
Up Shot: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|\vec{x}_i - \vec{x}_j\|_2^2$$
Up Shot: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$
\| \vec{x}_i - \vec{x}_j \|_2^2 = \| \vec{x}_i \|_2^2 + \| \vec{x}_j \|_2^2 - 2 \vec{x}_i^T \vec{x}_j
$$
Curse of Dimensionality

Up Shot: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$
\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T\vec{x}_j \geq 1.98.
$$
Up Shot: In d-dimensional space, a set of $2^\Theta(\epsilon^2 d)$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T \vec{x}_j \geq 1.98.$$

Even with an exponential number of random vector samples, we don’t see any nearby vectors.
Up Shot: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = .01$)

$$
\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T \vec{x}_j \geq 1.98.
$$

Even with an exponential number of random vector samples, we don’t see any nearby vectors.

- Can make methods like nearest neighbor classification or clustering useless.
The curse of dimensionality refers to various phenomena that arise when analyzing and organizing data in high-dimensional spaces (often with hundreds or thousands of dimensions) that do not occur in low-dimensional settings. It affects many fields, including statistics, machine learning, information retrieval, and data mining.

Up Shot: In d-dimensional space, a set of $2^\Theta(\epsilon^2 d)$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = 0.01$)

$$\|\vec{x}_i - \vec{x}_j\|_2^2 = \|\vec{x}_i\|_2^2 + \|\vec{x}_j\|_2^2 - 2\vec{x}_i^T\vec{x}_j \geq 1.98.$$

Even with an exponential number of random vector samples, we don’t see any nearby vectors.

- Can make methods like nearest neighbor classification or clustering useless.

Curse of dimensionality for sampling/learning functions in high-dimensional space – samples are very ‘sparse’ unless we have a huge amount of data.
Up Shot: In d-dimensional space, a set of $2^{\Theta(\epsilon^2 d)}$ random unit vectors have all pairwise dot products at most ϵ (think $\epsilon = 0.01$)

$$\|\mathbf{x}_i - \mathbf{x}_j\|_2^2 = \|\mathbf{x}_i\|_2^2 + \|\mathbf{x}_j\|_2^2 - 2\mathbf{x}_i^T \mathbf{x}_j \geq 1.98.$$

Even with an exponential number of random vector samples, we don’t see any nearby vectors.

- Can make methods like nearest neighbor classification or clustering useless.

Curse of dimensionality for sampling/learning functions in high-dimensional space – samples are very ‘sparse’ unless we have a huge amount of data.

- Only hope is if we lots of structure (which we typically do...)

Curse of dimensionality
Distances for MNIST Digits:

Another Interpretation:
Tells us that random data can be a very bad model for actual input data.
Distances for MNIST Digits:

Distances for Random Images:

Another Interpretation: Tells us that random data can be a very bad model for actual input data.
Recall: The Johnson Lindenstrauss lemma states that if \(\Pi \in \mathbb{R}^{m \times d} \) is a random matrix (linear map) with \(m = O \left(\frac{\log n}{\epsilon^2} \right) \), for \(\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d \) with high probability, for all \(i, j \):

\[
(1 - \epsilon) \| \vec{x}_i - \vec{x}_j \|_2^2 \leq \| \Pi \vec{x}_i - \Pi \vec{x}_j \|_2^2 \leq (1 + \epsilon) \| \vec{x}_i - \vec{x}_j \|_2^2.
\]
Recall: The Johnson Lindenstrauss lemma states that if $\Pi \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O \left(\frac{\log n}{\epsilon^2} \right)$, for $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \| \vec{x}_i - \vec{x}_j \|_2^2 \leq \| \Pi \vec{x}_i - \Pi \vec{x}_j \|_2^2 \leq (1 + \epsilon) \| \vec{x}_i - \vec{x}_j \|_2^2.$$

Implies: If $\vec{x}_1, \ldots, \vec{x}_n$ are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon/8$), then $\frac{\Pi \vec{x}_1}{\| \Pi \vec{x}_1 \|_2}, \ldots, \frac{\Pi \vec{x}_n}{\| \Pi \vec{x}_n \|_2}$ are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ).
Recall: The Johnson Lindenstrauss lemma states that if \(\Pi \in \mathbb{R}^{m \times d} \) is a random matrix (linear map) with \(m = O\left(\frac{\log n}{\epsilon^2}\right) \), for \(\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d \) with high probability, for all \(i, j \):

\[
(1 - \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2 \leq \|\Pi \vec{x}_i - \Pi \vec{x}_j\|_2^2 \leq (1 + \epsilon) \|\vec{x}_i - \vec{x}_j\|_2^2.
\]

Implies: If \(\vec{x}_1, \ldots, \vec{x}_n \) are nearly orthogonal unit vectors in \(d \)-dimensions (with pairwise dot products bounded by \(\epsilon/8 \)), then \(\frac{\Pi \vec{x}_1}{\|\Pi \vec{x}_1\|_2}, \ldots, \frac{\Pi \vec{x}_n}{\|\Pi \vec{x}_n\|_2} \) are nearly orthogonal unit vectors in \(m \)-dimensions (with pairwise dot products bounded by \(\epsilon \)).

- Algebra is a bit messy but a good exercise to partially work through.
Claim 1: n nearly orthogonal unit vectors can be projected to $m = O \left(\frac{\log n}{\epsilon^2} \right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.
Claim 1: n nearly orthogonal unit vectors can be projected to $m = O \left(\frac{\log n}{\epsilon^2} \right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

- For both these to hold it might be that $n \leq 2^{O(\epsilon^2 m)}$.

Claim 1: n nearly orthogonal unit vectors can be projected to $m = O \left(\frac{\log n}{\epsilon^2} \right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

- For both these to hold it might be that $n \leq 2^{O(\epsilon^2 m)}$.
- $2^{O(\epsilon^2 m)} = 2^{O(\log n)} \geq n$.

This tells us that the JL lemma is optimal up to constants. m is chosen just large enough so that the odd geometry of d-dimensional space still holds on the n points in question after projection to a much lower dimensional space.
Claim 1: n nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

- For both these to hold it might be that $n \leq 2^{O(\epsilon^2 m)}$.
- $2^{O(\epsilon^2 m)} = 2^{O(\log n)} \geq n$. Tells us that the JL lemma is optimal up to constants.
Claim 1: n nearly orthogonal unit vectors can be projected to $m = O \left(\frac{\log n}{\epsilon^2} \right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there are at most $2^{O(\epsilon^2 m)}$ nearly orthogonal vectors.

- For both these to hold it might be that $n \leq 2^{O(\epsilon^2 m)}$.
- $2^{O(\epsilon^2 m)} = 2^{O(\log n)} \geq n$. Tells us that the JL lemma is optimal up to constants.
- m is chosen just large enough so that the odd geometry of d-dimensional space still holds on the n points in question after projection to a much lower dimensional space.
Let B_d be the unit ball in d dimensions. $B_d = \{ x \in \mathbb{R}^d : \|x\|_2 \leq 1 \}$.

What percentage of the volume of B_d falls within ϵ distance of its surface?

Answer: all but a $(1 - \epsilon^d)$ fraction. Exponentially small in the dimension d!
Let B_d be the unit ball in d dimensions. $B_d = \{ x \in \mathbb{R}^d : \|x\|_2 \leq 1 \}$.

What percentage of the volume of B_d falls within ϵ distance of its surface?
Let \mathcal{B}_d be the unit ball in d dimensions. $\mathcal{B}_d = \{x \in \mathbb{R}^d : \|x\|_2 \leq 1\}$.

What percentage of the volume of \mathcal{B}_d falls within ϵ distance of its surface?

Volume of a radius R ball is $\frac{\pi^{d/2}}{(d/2)!} \cdot R^d$.
Let B_d be the unit ball in d dimensions. $B_d = \{ x \in \mathbb{R}^d : \| x \|_2 \leq 1 \}$.

What percentage of the volume of B_d falls within ϵ distance of its surface? Answer: all but a $(1 - \epsilon)^d \leq e^{-\epsilon d}$ fraction. Exponentially small in the dimension d!

Volume of a radius R ball is $\frac{\pi^{\frac{d}{2}}}{(d/2)!} \cdot R^d$.
All but an $e^{-εd}$ fraction of a unit ball’s volume is within $ε$ of its surface.
All but an $e^{-\epsilon d}$ fraction of a unit ball’s volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \leq 1$, nearly all will have $\|x\|_2 \geq 1 - \epsilon$.
All but an $e^{-\epsilon d}$ fraction of a unit ball’s volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \leq 1$, nearly all will have $\|x\|_2 \geq 1 - \epsilon$.

- **Isoperimetric inequality**: the ball has the minimum surface area/volume ratio of any shape.
All but an $e^{-\epsilon d}$ fraction of a unit ball’s volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \leq 1$, nearly all will have $\|x\|_2 \geq 1 - \epsilon$.

- **Isoperimetric inequality**: the ball has the minimum surface area/volume ratio of any shape.

- If we randomly sample points from any high-dimensional shape, nearly all will fall near its surface.
All but an $e^{-\epsilon^d}$ fraction of a unit ball’s volume is within ϵ of its surface. If we randomly sample points with $\|x\|_2 \leq 1$, nearly all will have $\|x\|_2 \geq 1 - \epsilon$.

- **Isoperimetric inequality**: the ball has the minimum surface area/volume ratio of any shape.

- If we randomly sample points from any high-dimensional shape, nearly all will fall near its surface.
- ‘All points are outliers.’
What fraction of the cubes are visible on the surface of the cube?
What fraction of the cubes are visible on the surface of the cube?

\[
\frac{10^3 - 8^3}{10^3} = \frac{1000 - 512}{1000} = .488.
\]
What percentage of the volume of B_d falls within ϵ distance of its equator?

Formally: volume of set $S = \{x \in B_d : |x(1)| \leq \epsilon\}$.
What percentage of the volume of B_d falls within ϵ distance of its equator? Answer: all but a $2^{\Theta(-\epsilon^2 d)}$ fraction.

Formally: volume of set $S = \{ x \in B_d : |x(1)| \leq \epsilon \}$.
BIZARRE SHAPE OF HIGH-DIMENSIONAL BALLS

What percentage of the volume of B_d falls within ε distance of its equator? Answer: all but a $2^{\Theta(-\varepsilon^2 d)}$ fraction.

Formally: volume of set $S = \{ x \in B_d : |x(1)| \leq \varepsilon \}$.

By symmetry, all but a $2^{\Theta(-\varepsilon^2 d)}$ fraction of the volume falls within ε of any equator! $S = \{ x \in B_d : |\langle x, t \rangle| \leq \varepsilon \}$
Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.
Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.
Claim 1: All but a $2^{\Theta(-\epsilon^2d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.
Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.
Claim 1: All but a $2^{\Theta(-\epsilon^2 d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.

How is this possible?
Claim 1: All but a $2^{\Theta(-\epsilon^2d)}$ fraction of the volume of a ball falls within ϵ of any equator.

Claim 2: All but a $2^{\Theta(-\epsilon d)}$ fraction falls within ϵ of its surface.

How is this possible? High-dimensional space looks nothing like this picture!