Today

- Randomized Median Finding
Problem. Given a set of numbers $S = \{a_1, \ldots, a_n\}$ the median is the number in the middle if the numbers were sorted.

- If n is odd then kth smallest element where $k = (n + 1)/2$.
- If n is even then kth smallest element where $k = n/2$.
Median Find

Problem. Given a set of numbers $S = \{a_1, \ldots, a_n\}$ the median is the number in the middle if the numbers were sorted.

- If n is odd then kth smallest element where $k = (n + 1)/2$.
- If n is even then kth smallest element where $k = n/2$.

Deterministic algorithm?
Problem. Given a set of numbers $S = \{a_1, \ldots, a_n\}$ the median is the number in the middle if the numbers were sorted.

- If n is odd then kth smallest element where $k = (n + 1)/2$.
- If n is even then kth smallest element where $k = n/2$.

Deterministic algorithm?

- Sort numbers, take kth smallest.
Problem. Given a set of numbers $S = \{a_1, \ldots, a_n\}$ the median is the number in the middle if the numbers were sorted.

- If n is odd then kth smallest element where $k = (n + 1)/2$.
- If n is even then kth smallest element where $k = n/2$.

Deterministic algorithm?

- Sort numbers, take kth smallest.
- $O(n \log n)$.
More generally

Problem. Given a set of numbers $S = \{a_1, \ldots, a_n\}$ and number k, return kth smallest number. (Assume no duplicates)
More generally

Problem. Given a set of numbers $S = \{a_1, \ldots, a_n\}$ and number k, return the kth smallest number. (Assume no duplicates)

Special cases:

- $k = 1$: minimum element
- $k = n$: maximum element
Problem. Given a set of numbers $S = \{a_1, \ldots, a_n\}$ and number k, return kth smallest number. (Assume no duplicates)

Special cases:

- $k = 1$: minimum element $O(n)$
- $k = n$: maximum element $O(n)$.

Why is it $O(n \log n)$ for $k = n/2$?
More generally

Problem. Given a set of numbers $S = \{a_1, \ldots, a_n\}$ and number k, return kth smallest number. (Assume no duplicates)

Special cases:

- $k = 1$: minimum element $O(n)$
- $k = n$: maximum element $O(n)$.

Why is it $O(n \log n)$ for $k = n/2$?
Divide and Conquer Algorithm

- Choose splitter (or pivot) \(a_i \in S \)
Divide and Conquer Algorithm

- Choose splitter (or pivot) $a_i \in S$
- Form sets $S^- = \{a_j : a_j < a_i\}$, $S^+ = \{a_j : a_j > a_i\}$.
Divide and Conquer Algorithm

- Choose splitter (or pivot) \(a_i \in S \)
- Form sets \(S^- = \{ a_j : a_j < a_i \} \), \(S^+ = \{ a_j : a_j > a_i \} \).

If:
- \(|S^-| = k - 1 \): \(a_i \) is the target.
Divide and Conquer Algorithm

- Choose splitter (or pivot) \(a_i \in S \)
- Form sets \(S^- = \{ a_j : a_j < a_i \} \), \(S^+ = \{ a_j : a_j > a_i \} \).

If:

- \(|S^-| = k - 1 \): \(a_i \) is the target.
- \(|S^-| \geq k \): recurse on \((S^-, k)\).
Divide and Conquer Algorithm

- Choose splitter (or pivot) $a_i \in S$
- Form sets $S^- = \{a_j : a_j < a_i\}$, $S^+ = \{a_j : a_j > a_i\}$.

If:

- $|S^-| = k - 1$: a_i is the target.
- $|S^-| \geq k$: recurse on (S^-, k).
- $|S^-| < k - 1$, recurse on $(S^+, k - (|S^-| + 1))$.
Pseudocode

\textbf{SELECT}(S,k):

Choose splitter $a_i \in S$.

\textbf{for} each $a_j \in S$ \textbf{do}

- Put $a_j \in S^-$ if $a_j < a_i$.
- Put $a_j \in S^+$ if $a_j > a_i$.

\textbf{end for}

If $|S^-| = k - 1$, then return a_i.

If $|S^-| \geq k$, return \textbf{SELECT}(S^-, k).

Else, return \textbf{SELECT}(S^+, $k - (|S^-| + 1)$).
Pseudocode

\[\text{SELECT}(S, k): \]

Choose splitter \(a_i \in S \).

for each \(a_j \in S \) **do**

- Put \(a_j \in S^- \) if \(a_j < a_i \).
- Put \(a_j \in S^+ \) if \(a_j > a_i \).

end for

If \(|S^-| = k - 1 \), then return \(a_i \).
If \(|S^-| \geq k \), return \(\text{SELECT}(S^-, k) \).
Else, return \(\text{SELECT}(S^+, k - (|S^-| + 1)) \).

Looks kind of like quicksort...
Pseudocode

\[\text{SELECT}(S,k): \]

Choose splitter \(a_i \in S \).

for each \(a_j \in S \) **do**

\(\text{Put } a_j \in S^{-} \text{ if } a_j < a_i. \)

\(\text{Put } a_j \in S^{+} \text{ if } a_j > a_i. \)

end for

If \(|S^{-}| = k - 1 \), then return \(a_i \).

If \(|S^{-}| \geq k \), return \(\text{SELECT}(S^{-}, k) \).

Else, return \(\text{SELECT}(S^{+}, k - (|S^{-}| + 1)) \).

Looks kind of like quicksort...

Fact. Algorithm is correct.
How to choose splitter?

We want recursive calls to work on much smaller sets.

- Best case, splitter is the median:

 \[T(n) \leq T(n/2) + cn \Rightarrow O(n) \text{ runtime} \]
How to choose splitter?

We want recursive calls to work on much smaller sets.

- Best case, splitter is the median:
 \[T(n) \leq T(n/2) + cn \Rightarrow O(n) \text{ runtime} \]

- Worst case, splitter is largest element:
 \[T(n) \leq T(n - 1) + cn \Rightarrow O(n^2) \text{ runtime} \]
How to choose splitter?

We want recursive calls to work on much smaller sets.

- **Best case, splitter is the median:**
 \[
 T(n) \leq T(n/2) + cn \Rightarrow O(n) \text{ runtime}
 \]

- **Worst case, splitter is largest element:**
 \[
 T(n) \leq T(n - 1) + cn \Rightarrow O(n^2) \text{ runtime}
 \]

- **Middle case, splitter separates }n \text{ elements**}
 \[
 T(n) \leq T((1 - \epsilon)n) + cn
 \]
 \[
 T(n) \leq cn \left[1 + (1 - \epsilon) + (1 - \epsilon)^2 + \ldots\right] \leq \frac{cn}{\epsilon}
 \]

How can we stay close to the best case?
Randomized Splitters

Idea. Choose splitter uniformly at random.
Randomized Splitters

Idea. Choose splitter uniformly at random.

Analysis. Phase j when $n(3/4)^{j+1} \leq |S| \leq n(3/4)^j$.

- **Claim.** Expect to stay in phase j for two rounds.
Randomized Splitters

Idea. Choose splitter uniformly at random.

Analysis. Phase j when $n(3/4)^{j+1} \leq |S| \leq n(3/4)^j$.

- **Claim.** Expect to stay in phase j for two rounds.
 - Call splitter *central* if separates $1/4$ fraction of elements.
Randomized Splitters

Idea. Choose splitter uniformly at random.

Analysis. Phase j when $n(3/4)^{j+1} \leq |S| \leq n(3/4)^j$.

- **Claim.** Expect to stay in phase j for two rounds.
 - Call splitter *central* if separates $1/4$ fraction of elements.
 - $\Pr[\text{central splitter}] = 1/2$.
Randomized Splitters

Idea. Choose splitter uniformly at random.

Analysis. Phase j when $n(3/4)^{j+1} \leq |S| \leq n(3/4)^j$.

- **Claim.** Expect to stay in phase j for two rounds.
 - Call splitter *central* if separates $1/4$ fraction of elements.
 - $\Pr[\text{central splitter}] = 1/2$.
 - If X is number of attempts until central splitter,
Randomized Splitters

Idea. Choose splitter uniformly at random.

Analysis. Phase j when $n(3/4)^{j+1} \leq |S| \leq n(3/4)^j$.

- **Claim.** Expect to stay in phase j for two rounds.
 - Call splitter *central* if separates $1/4$ fraction of elements.
 - $\Pr[central \ splitter] = 1/2$.
 - If X is number of attempts until central splitter,

 $$E[X] = \sum_{j=1}^{\infty} j \Pr[X = j] = \sum_{j=1}^{\infty} j p(1 - p)^{j-1}$$

 $$= \frac{p}{1 - p} \sum_{j=1}^{\infty} j(1 - p)^j = \frac{p}{1 - p} \frac{(1 - p)}{p^2}$$

 $$= \frac{1}{p}$$
Analysis

- Let Y be a r.v. equal to number of steps of the algorithm

\[Y = Y_0 + Y_1 + Y_2 + \ldots \]

where Y_j is steps in phase j.

- One iteration in phase j takes $cn(3/4)^j$ steps.

- $E[Y_j] \leq 2cn(3/4)^j$ since expect two iterations.

- $E[Y] = \sum_j E[Y_j] \leq \sum_j 2cn(3/4)^j \leq 8cn$.

Theorem

Expected running time of Select (n,k) is $O(n)$.
Analysis

- Let Y be a r.v. equal to number of steps of the algorithm
- $Y = Y_0 + Y_1 + Y_2 + \ldots$ where Y_j is steps in phase j
Let Y be a r.v. equal to number of steps of the algorithm

- $Y = Y_0 + Y_1 + Y_2 + \ldots$ where Y_j is steps in phase j
- One iteration in phase j takes $cn(3/4)^j$ steps.
Let Y be a r.v. equal to number of steps of the algorithm.

$Y = Y_0 + Y_1 + Y_2 + \ldots$ where Y_j is steps in phase j

One iteration in phase j takes $cn(3/4)^j$ steps.

$E[Y_j] \leq 2cn(3/4)^j$ since expect two iterations.
Let Y be a r.v. equal to number of steps of the algorithm

$Y = Y_0 + Y_1 + Y_2 + \ldots$ where Y_j is steps in phase j

One iteration in phase j takes $cn(3/4)^j$ steps.

$E[Y_j] \leq 2cn(3/4)^j$ since expect two iterations.

\[
E[Y] = \sum_j E[Y_j] \leq \sum_j 2cn(3/4)^j
\]

\[
= 2cn \sum_j (3/4)^j \leq 8cn
\]
Analysis

Let Y be a r.v. equal to number of steps of the algorithm

$Y = Y_0 + Y_1 + Y_2 + \ldots$ where Y_j is steps in phase j

One iteration in phase j takes $cn(3/4)^j$ steps.

$\mathbb{E}[Y_j] \leq 2cn(3/4)^j$ since expect two iterations.

$$
\mathbb{E}[Y] = \sum_j \mathbb{E}[Y_j] \leq \sum_j 2cn(3/4)^j
$$

$$
= 2cn \sum_j (3/4)^j \leq 8cn
$$

Theorem

Expected running time of $\text{SELECT}(n,k)$ is $O(n)$.
Applications

- Randomized median find in expected linear time
Applications

- Randomized median find in expected linear time

Quicksort (Sketch)
- Choose pivot at random from S^-, S^+
- Recursively sort both
- Concatenate together
Applications

- Randomized median find in expected linear time

Quicksort (Sketch)

- Choose pivot at random form S^-, S^+
- Recursively sort both
- Concatenate together

Theorem. Quicksort has expected $O(n \log n)$ time.