Today

Randomized Algorithms + Probability Tools
- Resource Contention
- Minimum Cuts

Announcements
- Updated grades
- Updated schedule
- Programming Assignment

Randomized Algorithms
- So far: deterministic algorithms on worst case inputs.
- Why worst case?
 - Enables precise statements
 - But maybe not reflective of real-world instances.
 - Average-case analysis? What distribution?

Randomized Algorithms
- So far: deterministic algorithms on worst case inputs.
- Why deterministic algorithms?
 - Easier to understand, pretty powerful.
- Two types of randomized algorithms:
 - Fail with some small probability.
 - Always succeed but running time is random.
- How powerful are randomized algorithms?

Resource Contention
- tl;dr: Randomization helps with symmetry breaking.
- How do we share a resource in distributed settings?
 - Option #1: Coordination between agents (expensive)
 - Option #2: Randomize access
Resource contention

- n agents P_1, \ldots, P_n and a shared resource.
- At each round, agents can request access to the resource.
 - > 1 requests — conflict, no access.
 - 0 requests — wasted round, no access.
 - 1 request — access granted.
- What is a good decentralized protocol where all agents get regular access?

A centralized solution?

- Round-robin access:
 - Cycle through agents 1, \ldots, n.
 - No wasted round.
 - Each agent gets 1 access every n rounds.
 - After n rounds all agents have accessed.
- But a lot of coordination!

Decentralized solution

On each round, each agent accesses with probability p.
First question: What choice for p?
- Let $A[i, t]$ be the event that P_i attempts to access on round t
 $$ \Pr[A[i, t]] = p, \quad \Pr[A[j, t]] = (1 - p) $$
- Let $S[i, t]$ be the event that P_i successfully accesses on round t
 $$ S[i, t] = A[i, t] \cap \left(\bigcap_{j \neq i} A[j, t] \right) $$
 $$ \Pr[S[i, t]] = p(1 - p)^{n-1} $$

How to choose p?

$$ f(p) = \Pr[S[i, t]] = p(1 - p)^{n-1} $$

$f(p)$ maximized at $p = 1/n$.

Some asymptotics

$$ \Pr[S[i, t]] = \frac{1}{n} \left(1 - \frac{1}{n} \right)^{n-1} $$

- $(1 - \frac{1}{n})^n \rightarrow \frac{1}{e}$ and $(1 - \frac{1}{n})^{n-1} \rightarrow \frac{1}{e}$

- $\frac{1}{en} \leq \Pr[S[i, t]] \leq \frac{1}{2n}$

Decentralized Solution

- Success probability is $\Theta(1/n)$ in one round
- What about for multiple rounds?
 - Def: $F[i, t]$ = event that i unsuccessful through round t
 $$ \Pr[F[i, t]] = \Pr[\bigcap_{r=1}^{t} S[i, r]] $$
 $$ = \prod_{r=1}^{t} \Pr[S[i, r]] $$
 $$ = \left[1 - \frac{1}{n} \left(1 - \frac{1}{n} \right)^{n-1} \right]^t \leq \left(1 - \frac{1}{en} \right)^t $$
 - With $t = \lfloor en \rfloor$, $\Pr[F[i, t]] \leq \frac{1}{e}$
 - With $t = \lfloor en \rfloor \cdot c \ln n$, $\Pr[F[i, t]] \leq n^{-c}$.
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Centralized</th>
<th>Decentralized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rounds until individual success</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n \ln n)$ w.h.p.</td>
</tr>
<tr>
<td>Rounds until everyone succeeds</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n \ln n)$ w.h.p.</td>
</tr>
</tbody>
</table>

Decentralized Solution

- How long until all agents access at least once?
- Let F_t denote event that some agent failed after t rounds

\[
\Pr[F_t] = \Pr\left[\bigcup_{i=1}^{n} F[i, t] \right] \leq \sum_{i=1}^{n} \Pr[F[i, t]]
\]

Set $t = 2\lceil en \rceil \ln n$

\[
\Pr[F_t] \leq \sum_{i=1}^{n} n^{-2} = n^{-1}
\]

Theorem

With probability at least $1 - 1/n$ all agents succeed in accessing the resource within $2\lceil en \rceil \ln n$ rounds.

Resource Contention Takeaways

- Simple randomization good for symmetry breaking.
- Technical tools:
 - Intersection of independent events
 - Some calculus
 - Union bound

Minimum Cuts

Problem. Given undirected $G = (V, E)$, partition V into sets $A, V \setminus A$ to minimize,

\[
cut(A) = |\{(u, v) \in E, u \in A, v \notin A\}|
\]

- Previously, we saw how to compute minimum $s - t$ cut in directed graph.
- How do we compute global minimum cut?

Deterministic Algorithm

Idea. Convert into $s - t$ cut in directed graph.
Replace $e = (u, v)$ with directed edges in both directions (with capacity 1).
Pick arbitrary s.
for each other vertex t do
 Compute minimum $s - t$ cut.
end for
Return smallest computed $s - t$ cut.

Running Time. n max-flow computations $\Rightarrow O(nm^2)$ at best.
Contraction Algorithm Preliminaries

Def. Multigraph $G = (V, E)$ is a graph that can have parallel edges.

Def. Contracting an edge (u, v) in $G = (V, E)$ produces a new multigraph $G' = (V', E')$

- With new node w instead of u, v ((u, v) edges deleted).
- If (x, u) or $(x, v) \in E$, then $(x, w) \in E'$.
- All other edges preserved.

Contraction Algorithm

$S(v) = \{v\}$ for all $v \in V$.

while $|V| > 2$ do

Pick edge $(u, v) \in E$ uniformly at random.

Contract edge (u, v) to get G' with new node w

Set $S(w) \leftarrow S(u) \cup S(v)$.

Update $G \leftarrow G'$.

end while

Return $S(v)$ for $v \in V$.

Contraction Algorithm Analysis

Theorem. Alg finds global min cut with probability at least $1/n^2$.

Proof. Suppose (A, B) is a global min cut with $\text{cut}(A, B) = k$

- What could go wrong in the first step?
 - Select (u, v) where $u \in A, v \in B$.

 $\Pr[\text{mistake in round 1}] = \Pr[select\ u \in A, v \in B] = \frac{k}{\#\ of\ edges}$

- $\#\ of\ edges \geq \frac{1}{4}kn$ since if $\deg(w) < k$ ($\{w\}, V \setminus \{w\}$) is smaller cut!

Final steps

- Let E_j be the event that (A, B) is not contracted in round j

 $\Pr[E_j|E_1 \cap \ldots \cap E_{j-1}] \geq 1 - \frac{2}{n-j+1}$

 $\Pr[E_1 \cap \ldots \cap E_{n-2}]$

 $\Pr[E_1] \cdot \Pr[E_2|E_1] \cdot \ldots \cdot \Pr[E_{n-2}|E_1 \cap \ldots \cap E_{n-3}]$

 $\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \ldots \left(1 - \frac{2}{3}\right)$

 $= \frac{2}{n(n-1)}$

Contraction Algorithm Analysis

$\Pr[\text{mistake in round 1}] \leq \frac{k}{\frac{1}{2}kn} = \frac{2}{n}$

- Consider round $j + 1$:
 - Every cut in contracted graph is a cut in G, so every supernode has degree at least k.

 $\Pr[\text{mistake in } j + 1|\text{success so far}] \leq \frac{k}{\frac{1}{2}k(n-j)} = \frac{2}{n-j}$

Contraction Algorithm

Theorem. Alg finds global min cut with probability at least $1/\binom{n}{2}$.

Corollary. If we run $\binom{n}{2}$ in n times, alg succeeds with probability at least $1 - 1/n$.

Proof.

$\Pr[\text{Fail all } t\ times] \leq \left(1 - \frac{1}{\binom{n}{2}}\right)^t$

If $t = c\binom{n}{2}$ this is at most e^{-c}.

Global Min Cuts Takeaways

- Simple randomized algorithm works pretty well.
- Technical Tools
 - Chain Rule
 - Some calculus