Recap

- Problem X is a set of strings s, the YES instances.
- Algorithm solves X if $A(s) = \text{true}$ iff $s \in X$.
- B is polytime certifier for X if
 - B is polytime algorithm of two inputs s and t (a hint).
 - $s \in X$ iff exists t with $|t| \leq p(|s|)$ and $B(s, t) = \text{True}$.
- P – class of problems with polytime algorithm.
- NP – class of problems with polytime certifier.

Example

- **Problem (X)**: INDEPENDENTSET
- **Instance (s)**: Graph G and number k
- **Algorithm (A)**: Try all subsets and check
- **Hint (t)**: Which nodes are in the answer?
- **Certifier (B)**: Are those nodes independent and size k?

Plan for today

- Review $3\text{-SAT} \leq_P \text{CIRCUITSAT}$
- HAMCYCLE
- TSP

The Reduction

- One variable x_v per circuit node v.
- Clauses to enforce circuit computations.
 - If v is \neg then v has one input u and can add clauses $(x_v \lor x_u), (\neg x_v \lor \neg x_u)$.
 - If v is \lor with u, w incoming then
 $(x_v \lor \neg x_u), (x_v \lor \neg x_w), (\neg x_v \lor x_u \lor x_w)$.
 - If v is \land then
 $(\neg x_v \lor x_u), (\neg x_v \lor x_w), (x_v \lor \neg x_u \lor \neg x_w)$.
- Input bits get set with (x_v) if fixed to one and $(\neg x_v)$ otherwise.
- Clause (x_v) for output bit.

Back to 3-SAT

Claim. If Y is NP-complete and $Y \leq_P X$, then X is NP-complete.

Theorem. 3-SAT is NP-Complete.

- Clearly in NP.
- Prove by reduction from CIRCUITSAT.

Example.
Final steps

- This formula satisfiable iff circuit is satisfiable.
- But not a 3-sat formula! It has clauses of size 1 and 2.
 - Fix: 4 new variables z_1, \ldots, z_4 where z_1, z_2 forced to be 0.
 - Include those two in any short clause.

Theorem. \textsc{IndependentSet}, \textsc{VertexCover}, \textsc{SetCover}, \textsc{SAT}, 3-SAT are all NP-Complete.

Finding NP-Complete Problems.

Want to prove problem X is NP-complete.
- Check $X \in \mathcal{NP}$.
- Choose known NP-complete problem Y.
- Prove $Y \leq_P X$.
- Often suffices to do single transformation from $y \to x$ where
 - $y \in Y$ if $x \in X$.
 - $y \notin Y$ if $x \notin X$.
 - Known as Karp Reduction.

Touring problems.

Two new problems.
- TSP – Traveling Salesman. Given points v_1, \ldots, v_n with distances $d(v_i, v_j) \geq 0$, can we visit all points and return home with total distance less than B?

$$\text{cost}(\sigma) = \sum_{i=1}^{n} d(v_{\sigma(i)}, v_{\sigma(i+1)})$$

- \textsc{HamCycle} – Hamiltonian Cycle. Given directed graph $G = (V, E)$, is there a cycle that visits each vertex exactly once?

HamCycle Example

Theorem. \textsc{HamCycle} is NP-Complete.
- It is in \mathcal{NP}.
- Need to reduce from some NP-Complete problem. Which one?

Claim. 3-SAT $\leq_P \textsc{HamCycle}$.
Reduction has two main parts.
- Make a graph with 2^n Hamiltonian cycles, one per assignment.
- Augment graph with clauses to invalidate assignments.

Graph skeleton
Skeleton Construction

- n rows (one per variable).
- Row has $4k + 2$ vertices connected in forward and backward path.
- First and last vertex of row i connected to first and last of $i + 1$.
- Source s connected to first and last of row 1.
- First and last of row n connected to t.
- Edge (t, s).

Augmenting

For clause $C_ℓ = x_i ∨ ¬x_j ∨ x_k$ new node $c_ℓ$ in graph.
- Edges $(v_i, 4_ℓ, c_ℓ)$ and $(c_ℓ, v_i, 4_ℓ + 1)$.
- Edges $(v_j, 4_ℓ + 1, c_ℓ)$ and $(c_ℓ, v_j, 4_ℓ)$.
- Edges $(v_k, 4_ℓ, c_ℓ)$ and $(c_ℓ, v_k, 4_ℓ + 1)$.

Can only visit $c_ℓ$ on row i if traverse i from left to right.

Example

$$(x_1 ∨ x_2 ∨ ¬x_3) \land (¬x_1 ∨ ¬x_2 ∨ ¬x_3)$$

Proof

If $φ$ is satisfying assignment
- If $φ(x_i) = 1$ traverse left to right, else right to left.
- For each $C_ℓ$, it is satisfied, so one term is traversed in the correct direction
- We can therefore splice it into our cycle.

If P is a Hamiltonian cycle
- If P visits $c_ℓ$ from row i, it will also leave to row i.
- Splice out clause variables leaves cycle on skeleton.
- Cycles on skeleton correspond to assignments!

Traveling Salesman

- TSP – Traveling Salesman. Given points v_1, \ldots, v_n with distances $d(v_i, v_j) \geq 0$, can we visit all points and return home with total distance less than B?

$$\text{cost}(σ) = \sum_{i=1}^{n} d(v_σ(i), v_σ(i+1))$$

Theorem. TSP is NP-Complete
- Clearly in NP.
- Reduction from HamCycle.

TSP reduction

Given HamCycle instance $G = (V, E)$ make TSP instance
- One point per vertex.
- $d(v_i, v_j) = 1$ if $(v_i, v_j) \in E$, else 2. (asymmetric).
- Set bound to be n.

TSP of distance n iff HamCycle of length n.
HamPath

Similar to Hamiltonian Cycle, visit every vertex exactly once.

Theorem. HamPath is NP-Complete.

Two proofs.
- Modify 3-SAT to HamCycle reduction.
- Reduce from HamCycle directly.

Graph Coloring

Def. A k-coloring of a graph $G = (V, E)$ is a function $f : V \rightarrow \{1, \ldots, k\}$ such that for all $(u, v) \in E$, $f(u) \neq f(v)$.

Problem. Given $G = (V, E)$ and number k, does G have a k-coloring?

Many applications
- Actually coloring maps!
- Scheduling jobs on machine with competing resources.
- Allocating variables to registers in a compiler.

Claim. 2-coloring $\in P$.

Proof.
- 2-coloring equivalent to bipartite testing.
- From discussion section.

Theorem. 3-coloring is NP-Complete.