Image Segmentation

- Using an expensive camera and appropriate lenses, you can get a “bokeh” effect on portrait photos in which the background is blurred and the foreground is in focus.
- But using cheap cameras in phones and appropriate software you can fake this effect...

Formulating the problem

- **Segmentation** or Foreground-Background separation.
- **Input:**
 - Set \(S \) pixels in \(n \times n \) grid with set \(N \) of neighboring pairs.
 - \(i \)th pixel has foreground score \(f_i \geq 0 \) and background score \(b_i \geq 0 \).
 - Each \((i, j)\) in \(N \) has penalty \(p_{ij} \geq 0 \) for labeling one in foreground and one in background.
- **Goal:** Partition pixels into foreground \(F \) and background \(B = S \setminus F \) to maximize
 \[
 \text{score}(F, B) = \sum_{i \in F} f_i + \sum_{j \in B} b_j - \sum_{(i, j) \in N : i \in F, j \in B} p_{ij}
 \]

Turning the problem into a network flow problem

- Define the directed graph \(G \) where
 - Pixels \(S \) are nodes of \(G \)
 - For each \((i, j)\) in \(N \), edge in each direction with capacity \(p_{ij} \)
 - Node \(s \) with an edge to each pixel \(i \) with capacity \(f_i \)
 - Node \(t \) with an edge from each pixel \(j \) with capacity \(b_j \)
- **Observe:**
 \[
 \text{score}'(F, B) = \sum_{i \in F} f_i + \sum_{j \in B} b_j + \sum_{(i, j) \in N : i \notin F, j \in B} p_{ij}
 \]
- **Define the directed graph \(G \) where**
 - Pixels \(S \), nodes of \(G \)
 - For each \((i, j)\) in \(N \), edge in each direction with capacity \(p_{ij} \)
 - Node \(s \) with an edge to each pixel \(i \) with capacity \(f_i \)
 - Node \(t \) with an edge from each pixel \(j \) with capacity \(b_j \)
- **Observe:**
 \[
 \text{score}'(F, B) = \text{cut}(F, B)
 \]
- **So finding minimum cut in \(G \) is equivalent to maximizing the image segmentation score.**
Example

Formally...

Claim. \((F^*, B^*)\) maximizes score ⇔ \((F^*, B^*)\) minimizes cut.

- Suppose \((F^*, B^*)\) maximizes score. Then for any \((F, B)\),
 \[
 0 \leq \text{score}(F^*, B^*) - \text{score}(F, B)
 = \text{score}(F, B) - \text{score}'(F^*, B^*)
 = \text{cut}(F, B) - \text{cut}'(F^*, B^*)

 \]
- Hence \((F^*, B^*)\) also minimizes cut.
- Other direction is analogous.

Note: You have to prove both.

Reducibility and Intractability

- Claim 1. If \(Y \leq^p X\) and \(X\) poly-time solvable, so is \(Y\).
 - Can use to design algorithms.
- Claim 2. If \(Y \leq^p X\) and \(Y\) not poly-time solvable, then \(X\) is not either.
 - Contrapositive of above.
 - Can be used to prove hardness.
 - The catch: we do not know of any problem \(Y\) that provably cannot be solved in polynomial time.

A first reduction

Definition. \(S \subset V\) is an independent set in a graph \(G = (V, E)\) if no nodes in \(S\) share an edge.

Problem. Does \(G\) have independent set of size at least \(k\)?

Definition. \(S \subset V\) is a vertex cover in a graph \(G = (V, E)\) if every edge adjacent to some \(v \in S\).

Problem. Does \(G\) have vertex cover of size at most \(k\)?

Theorem. \(\text{INDEPENDENTSET} \leq^p \text{VERTEXCOVER}\) and \(\text{VERTEXCOVER} \leq^p \text{INDEPENDENTSET}\).
Reduction #2: Set cover

Problem. Given a set U of n elements, subsets $S_1, \ldots, S_m \subseteq U$, and a number k, does there exist a collection of at most k subsets S_i whose union is U?

- Example:
 - U is the set of all skills.
 - Each S_i is a person.
 - Want to find a small team that has all skills.

- **Theorem.** $\text{VERTEXCOVER} \leq_p \text{SETCOVER}$

Interlude

- **Decision versus Optimization**
 - Algorithms so far have been for optimization
 - Reductions so far have been for decision
 - But can reduce optimization to decision and vice versa.
 - e.g., solve $\text{MAXINDSET}(G)$ by solving $\text{INDSET}(G, k)$ for $k = 1, \ldots, n$.
 - e.g., solve $\text{INDSET}(G, k)$ by computing $S = \text{MAXINDSET}(G)$ and output $1[|S| \geq k]$.

A bad reduction.

Given VERTEXCOVER instance (G, k), make SETCOVER instance with $U = E$, S_v is edges incident to v, $S_0 = U$, and integer k.

- If G has VC of size at most k, then U has cover of size at most k.
- But if U has cover of size k, G might not!

If (G, k) is a No instance, the reduction does not correctly return No.

Set cover reduction

Reduction. Given $G = (V, E)$ make set cover instance with $U = E$, and S_v is all edges incident to v. Keep k the same.

Proof. U covered with at most k sets if and only if E covered by at most k vertices.

- If v_1, \ldots, v_k is a VC then S_{v_1}, \ldots, S_{v_k} is a SC.
- If S_{v_1}, \ldots, S_{v_k} covers U, then every edge adjacent to one of $\{v_1, \ldots, v_k\}$.

Common Confusions

$Y \leq_p X$ means:

- Y is “no harder” than X
- X is “at least as hard” as Y.
- To show Y is easy, show $Y \leq_p X$ for easy Y.
- To show X is hard, show $Y \leq_p X$ for hard Y.

For decision problem Y, need to show two things.

- Correctly outputs YES and NO.

Reduction #3: Satisfiability

- Can we determine if a boolean formula has a satisfying assignment?
 - Let $X = \{x_1, \ldots, x_n\}$ be boolean variables
 - A term or literal is x_i or \bar{x}_i.
 - A clause is or of several terms $(t_1 \lor t_2 \lor \ldots \lor t_k)$.
 - A formula is and of several clauses
 - An assignment $v : X \rightarrow \{0, 1\}$ gives T/F to each variable.
 - v satisfies formula if all clauses evaluate to True.

Example.

$$(x_1 \lor \bar{x}_2) \land (x_1 \lor x_4 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_4) \land (x_3 \lor x_2)$$
Reduction #3: Satisfiability

SAT – Given boolean formula $C_1 \land C_2 \ldots \land C_m$ over variables $X = \{x_1, \ldots, x_n\}$, does there exist a satisfying assignment?

3-SAT – Given boolean formula $C_1 \land C_2 \ldots \land C_m$ over variables $X = \{x_1, \ldots, x_n\}$ where each C_i has three literals, does there exist a satisfying assignment?

▶ Any algorithms?

Theorem. 3-SAT \leq_P IndependentSet.

Reduction #3: Satisfiability

$(x_1 \lor x_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3)$

▶ Associate nodes in graph with literals (≥ 2 per variable).
▶ If $v(x_i) = 1$ in assignment, then cannot select some nodes.
▶ Associate 3 nodes per clause in a gadget.

Claim Graph has IS of size $n + m$ if and only if formula satisfiable.

▶ If formula satisfiable, select correct term on the left and one per clause on the right.
▶ If graph has IS,
 ▶ At most one node per clause on the right
 ▶ At most one node per variable on the left.
 ▶ If node selected in clause, its negation cannot be selected.