CMPSCI 311: Introduction to Algorithms

Lecture 18: Network Flow and Intractability

Akshay Krishnamurthy and Andrew McGregor

University of Massachusetts

Last Compiled: November 8, 2016

Today

» SEGMENTATION — Network Flow Application
» Reductions

Image Segmentation

» Using an expensive camera and appropriate lenses, you can get a
“bokeh" effect on portrait photos in which the background is
blurred and the foreground is in focus.

» But using cheap cameras in phones and appropriate software you
can fake this effect. ..

Formulating the problem

» SEGMENTATION or Foreground-Background separation.

> Input:
> Set S pixels in n x n grid with set N of neighboring pairs.
» ith pixel has foreground score f; > 0 and background score
b; > 0.
» Each (4,7) € N has penalty p;; > 0 for labeling one in
foreground and one in background.

» Goal: Partition pixels into foreground F' and background
B =S\ F to maximize

score(F, B) = Z fi+ Z bj —

ieF jeB

>

(i,j)EN:EF,jEB

A min-cut problem?

score(F, B) = Z fi+ Z bj — Z Dij

i€l jeB (i,j)eN:ieF,jeB
> Ignoring first two terms, almost a min-cut problem!
» Observation: Define
score'(F, B) =Y fi+ > b;j — score(F, B)
€S jeSs

=Y fi+ > b+ > Dij

i¢F j¢B (i,j)EN:EF,jEB

» Maximizing score equivalent to minimizing score’.
» Even closer to a min-cut problem!

Turning the problem into a network flow problem

score’ (F, B) = Z fi+ Z bj + Z Dij

igF j¢B (i,j)EN:EF,jEB

» Define the directed graph G where

Pixels S, are nodes of G

For each (i,7) € N, edge in each direction with capacity p;;
Node s with an edge to each pixel ¢ with capacity f;

Node ¢ with an edge from each pixel j with capacity b;

vVvyVvyy

» Observe:
score/(F,B) = cut(F,B)

» So finding minimum cut in G is equivalent to maximizing the
image segmentation score.

Example

Formally. ..

Claim. (F*, B*) maximizes score < (F'*, B*) minimizes cut.

> Suppose (F*, B*) maximizes score. Then for any (F, B).
0 < score(F™, B*) — score(F, B)

score’ (F, B) — score’ (F*, B¥)

= cut(F, B) — cut(F*, B*)

» Hence F'*, B* also minimizes cut.
» Other direction is analogous.

» Note: You have to prove both.

Reductions

» We just showed how to reduce SEGMENTATION to
NETWORKFLOW.

> Given algorithm for NETWORKFLOW (e.g., Ford-Fulkerson)
we can easily solve SEGMENTATION.
» Therefore, segmentation is “no harder” than network flow.

» Definition: Problem Y is poly-time reducible to problem X if:

» We can solve Y using polynomially many computations +
polynomially many calls to black-box algorithm for X.

» Or, if we can solve X in polynomial time, we can solve Y in
polynomial time as well.

» Write Y <p X.

» SEGMENTATION <p NETWORKFLOW

Reducibility and Intractability

» Claim 1. If Y <p X and X poly-time solvable, so is Y.
» Can use to design algorithms.

» Claim 2. If Y <p X and Y not poly-time solvable, then X is
not either.

» Contrapositive of above.
» Can be used to prove hardness.

» The catch: we do not know of any problem Y that provably
cannot be solved in polynomial time.

A first reduction

Definition. S C V is an independent set in a graph G = (V, E) if
no nodes in S share an edge.
Problem. Does G have independent set of size at least k?

)@

G @ ©®

o

Definition. S C V is a vertex cover in a graph G = (V, E) if every
edge adjacent to some v € S.
Problem. Does G have vertex cover of size at most k?

The reduction

Claim. S is independent if and only if V'\ S is a vertex cover.
Proof.

> Suppose S independent but V'\ S is not a vertex cover.
> Then exists (u,v) € E with u,v ¢ V'\ S.
> Implies u,v € S, but S independent. Contradiction.
> Suppose V' \ S is a vertex cover but S is not independent.

> Then exists u,v € S with (u,v) € E.
> But edge (u, v) not covered by V'\ S, contradiction.

Theorem. INDEPENDENTSET <p VERTEXCOVER and
VERTEXCOVER <p INDEPENDENTSET.

Reduction #2: Set cover

Problem. Given a set U of n elements, subsets S1,...,S, C U,
and a number k, does there exist a collection of at most k subsets
S; whose union is U?

» Example:

» U is the set of all skills.
» Each S; is a person.
» Want to find a small team that has all skills.

» Theorem. VERTEXCOVER <p SETCOVER

Set cover reduction

Reduction. Given G = (V, E') make set cover instance with

U =E, and S, is all edges incident to v. Keep k the same.
Proof. U covered with at most k sets if and only if £/ covered by
at most £ vertices.

> Ifvy,...,v0is aVCthen S,,,..., S, isa SC.
> If S;,...,S;, covers U, then every edge adjacent to one of

{i1,... i},

Interlude

» Decision versus Optimization

» Algorithms so far have been for optimization
» Reductions so far have been for decision

» But can reduce optimization to decision and vice versa.
> e.g., solve MAXINDSET(G) by solving INDSET(G, k) for
k=1,...,n.
> e.g., solve INDSET(G,k) by computing S = MAXINDSET(G)
and output 1[|S| > £].

Common Confusions

Y <p X means:
> Y is “no harder” than X

» X is “at least as hard” as Y.
» To show Y is easy, show Y <p X for easy X.
» To show X is hard, show Y <p X for hard Y.

For decision problem Y, need to show two things.

» Correctly outputs YES and NoO.

A bad reduction.

Given VERTEXCOVER instance (G, k), make SETCOVER instance
with U = E, S, is edges incident to v, Sy = U, and integer k.

» If G has VC of size at most k, then U has cover of size at most k.

» But if U has cover of size k, G might not!

If (G, k) is a NO instance, the reduction does not correctly return
No.

Reduction #3: Satisfiability

» Can we determine if a boolean formula has a satisfying
assignment?

> Let X = {z1,...,2,} be boolean variables
> A term or literal is x; or Z;.
> A clause is or of several terms (1 V2 V...V tp).
» A formula is and of several clauses
> An assignment v : X — {0,1} gives T/F to each variable.

» v satisfies formula if all clauses evaluate to True.

Example.

(x1 VZ2) A (T1 Vg VI3)A(T1V xa) A (T3 V T2)

Reduction #3: Satisfiability

SAT - Given boolean formula Cy A Cy ... A C,, over variables
X ={x1,...,2,}, does there exist a satisfying assignment?

3-SAT - Given boolean formula Cy A Cs ... A Cy, over variables
X ={m1,...,x,} where each C; has three literals, does there exist
a satisfying assignment?

> Any algorithms?

Theorem. 3-SAT <p INDEPENDENTSET.

Reduction #3: Satisfiability

(Il V o \/:f3) A (fl V Ty \/ig)
> Associate nodes in graph with literals (> 2 per variable).

» If v(z;) = 1 in assignment, then cannot select some nodes.
» Associate 3 nodes per clause in a gadget.

®
@6 o &o
HDO6 e
8%

Satisfiability Proof

2355

Claim Graph has IS of size n + m if and only if formula satisfiable.

» If formula satisfiable, select correct term on the left and one per
clause on the right.

» If graph has IS,

» At most one node per clause on the right
» At most one node per variable on the left.
> If node selected in clause, its negation cannot be selected.

