

Reduction #2: Set cover	Set cover reduction
Problem. Given a set U of n elements, subsets $S_1, \ldots, S_m \subset U$, and a number k , does there exist a collection of at most k subsets S_i whose union is U ? • Example: • U is the set of all skills. • Each S_i is a person. • Want to find a small team that has all skills. • Theorem. VERTEXCOVER \leq_P SETCOVER	 Reduction. Given G = (V, E) make set cover instance with U = E, and S_v is all edges incident to v. Keep k the same. Proof. U covered with at most k sets if and only if E covered by at most k vertices. If v₁,, v_ℓ is a VC then S_{v1},, S_{vℓ} is a SC. If S_{i1},, S_{iℓ} covers U, then every edge adjacent to one of {i₁,, i_ℓ}.
Interlude	Common Confusions
 Decision versus Optimization Algorithms so far have been for optimization Reductions so far have been for decision But can reduce optimization to decision and vice versa. e.g., solve MAXINDSET(G) by solving INDSET(G, k) for k = 1,, n. e.g., solve INDSET(G,k) by computing S = MAXINDSET(G) and output 1[S ≥ k]. 	$Y \leq_P X$ means: • Y is "no harder" than X • X is "at least as hard" as Y. • To show Y is easy, show $Y \leq_P X$ for easy X. • To show X is hard, show $Y \leq_P X$ for hard Y. For decision problem Y, need to show two things. • Correctly outputs YES and No.
 A bad reduction. Given VERTEXCOVER instance (G, k), make SETCOVER instance with U = E, S_v is edges incident to v, S₀ = U, and integer k. If G has VC of size at most k, then U has cover of size at most k. But if U has cover of size k, G might not! If (G, k) is a NO instance, the reduction does not correctly return NO. 	Reduction #3: Satisfiability • Can we determine if a boolean formula has a satisfying assignment? • Let $X = \{x_1, \dots, x_n\}$ be boolean variables • A term or literal is x_i or \bar{x}_i . • A clause is or of several terms $(t_1 \lor t_2 \lor \dots \lor t_\ell)$. • A formula is and of several clauses • An assignment $v : X \to \{0, 1\}$ gives T/F to each variable. • v satisfies formula if all clauses evaluate to True. Example.
	$(x_1 \lor \bar{x}_2) \land (x_1 \lor x_4 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_4) \land (x_3 \lor x_2)$

 \mbox{Claim} Graph has IS of size n+m if and only if formula satisfiable.

- If formula satisfiable, select correct term on the left and one per clause on the right.
- ► If graph has IS,
 - At most one node per clause on the right
 - At most one node per variable on the left.
 - If node selected in clause, its negation cannot be selected.