Defining Flows

- Flow network
- Directed graph
- Source node s and target node t
- Edge capacities $c(e) \geq 0$
- Flow
- Capacity Constraints: $0 \leq f(e) \leq c(e)$ on each edge
- Conservation Constraints:

 \[\sum_{e \in \text{in to } v} f(e) = \sum_{e \in \text{out of } v} f(e) \]

 where $f^{\text{in}}(v) = \sum_{e \text{ in to } v} f(e)$ and $f^{\text{out}}(v) = \sum_{e \text{ out of } v} f(e)$
- Max flow problem: find a flow of maximum value $\nu(f) = f^{\text{out}}(s)$

Residual Graph

Residual graph: data structure to identify opportunities to push more flow on edges with leftover capacity or undo flow on edges already carrying flow.

- Original edge $e = (u, v) \in E$
 - Flow $f(e)$
 - Capacity $c(e)$
- Forward residual edge
 - $f(e) > 0$, create edge $e' = (v, u)$
 - residual capacity $c(e) - f(e)$
- Backward residual edge
 - $f(e) > 0$, create edge $e' = (u, v)$
 - residual capacity $f(e)$

Residual Graph

Residual graph G_f with respect to flow $f = graph of all forward and backward residual edges with positive residual capacity.
Augmenting Path

Revised Idea: use paths in the residual graph to augment flow

Augment(f, P)

Let b = bottleneck(P, f) \[\triangleq \] least residual capacity in P

for edge \(e = (u, v) \) in \(P \) do

if \(e \) is a forward edge then

\[f(e) = f(e) + b \] \[\triangleq \] increase flow on forward edges

else

\[f(e) = f(e) - b \] \[\triangleq \] decrease flow on backward edges

end if

end for
Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm:

Repeatedly find augmenting paths in the residual graph and use them to augment flow!

Ford-Fulkerson(G, s, t)

- **Initially, no flow**
 - Initialize $f(e) = 0$ for all edges e
 - Initialize $G_f = G$

- **Augment flow as long as it is possible**
 - while there exists an s-t path P in G_f
 - $f = \text{Augment}(f, P)$
 - update G_f
 - end while

return f

Ford-Fulkerson Analysis

Step 1: argue that F-F returns a flow

Step 2: analyze termination and running time

Step 3: argue that F-F returns a maximum flow

We did steps 1 and 2 last time, so just need to consider step 3.

Step 3: F-F returns a maximum flow

We will prove this by establishing a deep connection between flows and cuts in graphs: the max-flow min-cut theorem.

- An s-t cut (A, B) is a partition of the nodes into sets A and B where $s \in A$, $t \in B$
- Capacity of cut (A, B) equals

 \[
 c(A, B) = \sum_{e \text{ from } A \text{ to } B} c(e)
 \]

- Flow across a cut (A, B) equals

 \[
 f(A, B) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)
 \]

Example of Cut

Capacity is 29 and flow across cut is 19.
Another Example of Cut

Flow Value Lemma

First relationship between cuts and flows

Lemma: let f be any flow and (A, B) be any s-t cut. Then

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

Basic idea of proof is to use conservation of flow: all the flow out of s must leave A eventually.

F-F returns a maximum flow

Theorem: The s-t flow f^* returned by F-F is a maximum flow.

- Since f^* is the final flow there are no residual paths in G_f.
- Let (A^*, B^*) be the s-t cut where A^* consists of all nodes reachable from s in the residual graph. Then

$$v(f) = f(A^*, B^*) = \sum_{e \text{ out of } A^*} f(e) - \sum_{e \text{ into } A^*} f(e).$$

- Any edge out of A^* must have $f(e) = c(e)$ otherwise there would be more nodes than just A^* that are reachable from s.
- Any edge into A^* must have $f(e) = 0$ otherwise there would be more nodes than just A^* that are reachable from s.
- Therefore

$$v(f) = f(A^*, B^*) = \sum_{e \text{ out of } A^*} c(e) = \sum_{e \text{ out of } A^*} f(e)$$

First Application of Network Flows: Bipartite Matching

- Given an undirected graph $G = (V, E)$, a subset of edges $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- The maximum matching problem is to find the matching with the most edges.
- We’ll design an efficient algorithm for maximum matching in a bipartite graph. Recall, a graph is bipartite if the nodes V can be partitioned into two sets $V = L \cup R$ such that all edges have one endpoint in L and one endpoint in R.

Corollary: Cuts and Flows

Really important corollary of flow-value lemma

Corollary: Let f be any s-t flow and let (A, B) be any s-t cut. Then $v(f) \leq c(A, B)$.

Proof:

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} c(e)$$

$$\leq c(A, B)$$

Implies that if there’s a flow f^* and cut (A^*, B^*) with $v(f^*) = c(A^*, B^*)$, then f^* is a max flow and (A^*, B^*) is a min cut.

Formulating it as a network flow problem

- Given an instance $G = (L \cup R, E)$ of maximum matching, create a directed graph with nodes $L \cup R \cup \{s, t\}$.
- For each undirected edge $(i, j) \in E$, add a directed edge from $i \in L$ to $j \in R$ with capacity 1.
- Add an edge with capacity 1 from s to each of the nodes in L.
- Add an edge with capacity 1 from each of the nodes in R to t.
- Claim: The size of the maximum matching in G equals the value of the maximum flow in G'.
Proof of Claim

- Any matching in G has size at most the maximum flow in G':
 - Can easily extend a matching in G of size k into a flow in G' of value k.
- Any flow in G' has size at most the maximum matching in G:
 - Consider the maximum flow f in G'. We may assume $f(e)$ is integral for each e.
 - Consider set of edges from L to R that have $f(e) = 1$, this is a matching because each node in L and R has at most one unit of flow in or out respectively.

Second Application of Network Flows: Image Segmentation

- Using an expensive camera and appropriate lenses, you can get a “bokeh” effect on portrait photos in which the background is blurred and the foreground is in focus.
- But using cheap cameras in phones and appropriate software you can fake this effect...

Formulating the problem

- **Input:**
 - Let V be the set of pixels in the images and let E be pairs of neighboring pixels.
 - For each pixel i, you have a likelihood $f_i \geq 0$ that it is in the foreground and a likelihood $b_i \geq 0$ that it is in the background.
 - For each $(i, j) \in E$, let p_{ij} be a penalty you pay for labeling one as foreground and one as background.
- **Goal:** You want to partition V into foreground pixels F and background pixels B such that you maximize
 $$\text{score}(F, B) = \sum_{i \in F} f_i + \sum_{j \in B} b_j - \sum_{(i, j) \in E : i \in F, j \in B} p_{ij}$$
- **Observation:** Define
 $$\text{score}'(F, B) = \sum_{i \in V} f_i + \sum_{j \in V} b_j - \text{score}(F, B)$$
- Maximizing $\text{score}(F, B)$ is same as minimizing $\text{score}'(F, B)$

Turning the problem into a network flow problem

- Define the directed graph G where
 - Pixels, V, are nodes of G
 - Between each pair of neighboring pixels i and j, add an edge in each direction with capacity p_{ij}.
 - Add node s with an edge to each pixel j with capacity f_i.
 - Add node t with an edge from each pixel j with capacity b_i.
- We can rewrite $\text{score}'(F, B)$ as:
 $$\text{score}'(F, B) = \sum_{i \in V} f_i + \sum_{j \in V} b_j - \text{score}(F, B)$$
 $$= \sum_{i \in B} f_i + \sum_{j \in F} b_j + \sum_{(i, j) \in E : i \in F, j \in B} p_{ij}$$
 $$= c(F, B)$$
- So finding minimum cut in G is equivalent to maximizing the image segmentation score.