Today

- Dynamic programming failures
- Dynamic programming takeaways
- Planning and Decision Processes
Interval Scheduling

Problem. Given n shows with start time s_i and finish time f_i, watch as many shows as possible, with no overlap.
Interval Scheduling

Problem. Given n shows with start time s_i and finish time f_i, watch as many shows as possible, with no overlap.

- **Greedy:** order by f_i (ascending), take next show if no conflict.
Interval Scheduling

Problem. Given n shows with start time s_i and finish time f_i, watch as many shows as possible, with no overlap.

- **Greedy:** order by f_i (ascending), take next show if no conflict.
- **Dynamic program:**
 - Order by finish time $f_1 \leq f_2 \leq \ldots \leq f_n$
 - Compute $p(i) = \max\{j : f_j \leq s_i\}$.
 - $\text{VAL}(n) = \max\{\text{VAL}(p(n)) + 1, \text{VAL}(n - 1)\}$.
Another attempt

- Order shows arbitrarily, let $Q(i)$ be the shows that conflict with i (including i).
Another attempt

- Order shows arbitrarily, let $Q(i)$ be the shows that conflict with i (including i).
- Consider optimal solution O,
 - If $n \not\in O$ then O is optimal on $\{1, \ldots, n - 1\}$.

How many subproblems? $\Omega(2^{n/2})$!
Another attempt

- Order shows arbitrarily, let $Q(i)$ be the shows that conflict with i (including i).

- Consider optimal solution O,
 - If $n \notin O$ then O is optimal on $\{1, \ldots, n - 1\}$.
 - If $n \in O$ then O is optimal on $\{1, \ldots, n - 1\} \setminus Q(n)$.
Another attempt

- Order shows arbitrarily, let $Q(i)$ be the shows that conflict with i (including i).

- Consider optimal solution O,
 - If $n \notin O$ then O is optimal on $\{1, \ldots, n - 1\}$.
 - If $n \in O$ then O is optimal on $\{1, \ldots, n - 1\} \setminus Q(n)$.

- Generally, for set of shows S, if $i \in S$,

$$VAL(S) = \max\{VAL(S \setminus \{i\}), 1 + VAL(S \setminus Q(i))\}.$$
Another attempt

- Order shows arbitrarily, let $Q(i)$ be the shows that conflict with i (including i).

- Consider optimal solution O,
 - If $n \notin O$ then O is optimal on $\{1, \ldots, n-1\}$.
 - If $n \in O$ then O is optimal on $\{1, \ldots, n-1\} \setminus Q(n)$.

- Generally, for set of shows S, if $i \in S$,
 \[
 \text{VAL}(S) = \max\{\text{VAL}(S \setminus \{i\}), 1 + \text{VAL}(S \setminus Q(i))\}.
 \]

- How many subproblems?
Another attempt

- Order shows arbitrarily, let $Q(i)$ be the shows that conflict with i (including i).

- Consider optimal solution O,
 - If $n \notin O$ then O is optimal on $\{1, \ldots, n-1\}$.
 - If $n \in O$ then O is optimal on $\{1, \ldots, n-1\} \setminus Q(n)$.

- Generally, for set of shows S, if $i \in S$,
 \[
 \text{VAL}(S) = \max\{\text{VAL}(S \setminus \{i\}), 1 + \text{VAL}(S \setminus Q(i))\}.
 \]

- How many subproblems? $\Omega(2^{n/2})$!
Proof Idea

Suppose shows are 1, \ldots, n and show i conflicts with n - i + 1.
Proof Idea

Suppose shows are $1, \ldots, n$ and show i conflicts with $n - i + 1$.

- Process $\{1, \ldots, n\}$ requires $\{2, \ldots, n - 1\}$ and $\{1, \ldots, n - 1\}$.
Proof Idea

Suppose shows are 1, \ldots, n and show \(i \) conflicts with \(n - i + 1 \).

- Process \(\{1, \ldots, n\} \) requires \(\{2, \ldots, n - 1\} \) and \(\{1, \ldots, n - 1\} \).
- \(\{2, \ldots, n - 1\} \) requires \(\{2, \ldots, n - 2\} \) and \(\{3, \ldots, n - 2\} \).
- \(\{1, \ldots, n - 1\} \) requires \(\{1, \ldots, n - 2\} \) and \(\{1, 3, \ldots, n - 2\} \).

- Creates 4 distinct subproblems.
Proof Idea

Suppose shows are $1, \ldots, n$ and show i conflicts with $n - i + 1$.

- Process $\{1, \ldots, n\}$ requires $\{2, \ldots, n - 1\}$ and $\{1, \ldots, n - 1\}$.
- $\{2, \ldots, n - 1\}$ requires $\{2, \ldots, n - 2\}$ and $\{3, \ldots, n - 2\}$.
- $\{1, \ldots, n - 1\}$ requires $\{1, \ldots, n - 2\}$ and $\{1, 3, \ldots, n - 2\}$.
- Creates 4 distinct subproblems.
Proof

- Suppose shows are 1, \ldots, n and show \(i \) conflicts with \(n - i + 1 \).
- Represent subsets as binary strings of length \(n \).
- Only worry about first \(n/2 \) bits (shows 1, \ldots, n/2).
Proof

- Suppose shows are $1, \ldots, n$ and show i conflicts with $n - i + 1$.
- Represent subsets as binary strings of length n.
- Only worry about first $n/2$ bits (shows $1, \ldots, n/2$).
- Create binary tree, where at level i process show $n - i + 1$.
 - Two subproblems, ith bit on and ith bit off.
Proof

- Suppose shows are 1, \ldots, n and show i conflicts with \(n - i + 1 \).
- Represent subsets as binary strings of length n.
- Only worry about first \(n/2 \) bits (shows 1, \ldots, n/2).
- Create binary tree, where at level i process show \(n - i + 1 \).
 - Two subproblems, \(i \)th bit on and \(i \)th bit off.
- Generates all strings on \(n/2 \) bits \(\Rightarrow \Omega(2^{n/2}) \) subproblems.
Dynamic Programming Takeaways

Recipe

- Devise recursive form for solution
Dynamic Programming Takeaways

Recipe

- Devise recursive form for solution
- Observe that recursive implementation involves redundant computation. (Often exponential time)
Dynamic Programming Takeaways

Recipe

- Devise recursive form for solution
- Observe that recursive implementation involves redundant computation. (Often exponential time)
- Design iterative algorithm that solves all subproblems without redundancy.
Dynamic Programming Takeaways

Recipe

▶ Devise recursive form for solution
▶ Observe that recursive implementation involves redundant computation. (Often exponential time)
▶ Design iterative algorithm that solves all subproblems without redundancy.

Concerns

▶ What are the subproblems? How many are there?
 ▶ Runtime and space complexity.
Decision Processes

- Model of an agent performing a task in an environment.
- Used in AI/robotics and many other places.
Decision Process

- Set of states \(S = \{1, \ldots, n\} \).
- Set of actions \(A = \{1, \ldots, k\} \).
- Transition model: \(T : S \times A \rightarrow S \).
- Reward function: \(R : S \times A \rightarrow \mathbb{Z} \).
- Timer \(H \).
Decision Process

- **Set of states** $S = \{1, \ldots, n\}$.
- **Set of actions** $A = \{1, \ldots, k\}$.
- **Transition model**: $T : S \times A \rightarrow S$.
- **Reward function**: $R : S \times A \rightarrow \mathbb{Z}$.
- **Timer** H.
Trajectories

- Agent starts in s_1, takes action a_1, receives reward $R(s_1, a_1)$ and transitions to s_2, etc.
- Generates trajectory $s_1, a_1, r_1, s_2, a_2, r_2, \ldots, s_H, a_H, r_H$, where $r_h = R(s_h, a_h)$.

Goal. Choose actions to maximize total reward.
Agent starts in s_1, takes action a_1, receives reward $R(s_1, a_1)$ and transitions to s_2, etc.

Generates trajectory $s_1, a_1, r_1, s_2, a_2, r_2, \ldots, s_H, a_H, r_H$, where $r_h = R(s_h, a_h)$.

Total reward is,

$$\sum_{h=1}^{H} r_h = \sum_{h=1}^{H} R(s_h, a_h)$$
Trajectories

- Agent starts in s_1, takes action a_1, receives reward $R(s_1, a_1)$ and transitions to s_2, etc.
- Generates trajectory $s_1, a_1, r_1, s_2, a_2, r_2, \ldots, s_H, a_H, r_H$, where $r_h = R(s_h, a_h)$.
- Total reward is,

$$\sum_{h=1}^{H} r_h = \sum_{h=1}^{H} R(s_h, a_h)$$

Goal. Choose actions to maximize total reward.
Decision Process

- A policy chooses an action at every state and time,

\[\pi : (S \times \{1, \ldots, H\}) \rightarrow A \]

Goal. Compute *policy* to maximize total reward.
A policy chooses an action at every state and time,

\[\pi : (S \times \{1, \ldots, H\}) \rightarrow A \]

Goal. Compute *policy* to maximize total reward.
Example

If $H = 1$:

$\pi^*(\cdot, 1)$
The Planning Problem

Problem. Compute optimal policy in decision process (S, A, T, R, H).

\[\pi^*(:11) \]

![Diagram](attachment:diagram.png)
Base case

Consider $H = 1$.

- The optimal policy is,

$$\pi^*(s, 1) = \arg\max_{a \in A} R(s, a)$$
Base case

Consider $H = 1$.

- The optimal policy is,
 \[
 \pi^*(s, 1) = \arg\max_{a \in A} R(s, a)
 \]

- The optimal values are,
 \[
 V^*(s, 1) = \max_{a \in A} R(s, a)
 \]
Base case

Consider $H = 1$.

- The optimal policy is,

$$\pi^*(s, 1) = \arg\max_{a \in A} R(s, a)$$

- The optimal values are,

$$V^*(s, 1) = \max_{a \in A} R(s, a)$$

- $V^*(s, H)$ is maximum total reward you can achieve starting in state s with H actions.
Inductive step

Consider arbitrary h.

$V^\star(s, h) = \max_{a \in A} R(s, a) + V^\star(T(s, a), h - 1)$

$Q^\star(s, a, h) = \arg\max_{a \in A} R(s, a) + V^\star(T(s, a), h - 1)$
Inductive step

Consider arbitrary h.

- If in state s, action a, receive $R(s, a)$ and transition to $T(s, a)$ with one less time point.
Inductive step

Consider arbitrary h.

- If in state s, action a, receive $R(s, a)$ and transition to $T(s, a)$ with one less time point.

- How much more reward can you receive from $s' = T(s, a)$ with $h - 1$ actions left?
Inductive step

Consider arbitrary h.

- If in state s, action a, receive $R(s, a)$ and transition to $T(s, a)$ with one less time point.

- How much more reward can you receive from $s' = T(s, a)$ with $h - 1$ actions left?

$$V^*(s, h) = \max_{a \in A} R(s, a) + V^*(T(s, a), h - 1)$$

$$Q^*(s, a, h)$$
Inductive step

Consider arbitrary h.

- If in state s, action a, receive $R(s, a)$ and transition to $T(s, a)$ with one less time point.

- How much more reward can you receive from $s' = T(s, a)$ with $h - 1$ actions left?

$$V^*(s, h) = \max_{a \in A} R(s, a) + V^*(T(s, a), h - 1)$$

- Policy is,

$$\pi^*(s, h) = \arg\max_{a \in A} R(s, a) + V^*(T(s, a), h - 1)$$

$$= \arg\max_{a \in A} Q^*(s, a, h)$$
Example

\[V^* (\cdot, 1) \]
Example

\[V^*(\cdot, 2) \]
Example

\[V^*(\cdot, 3) \]
Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
<td>+5</td>
</tr>
</tbody>
</table>

\[V^*(\cdot, 4) \]
Value iteration

ValueIteration(T,R,H)

Initialize \(V^*(s, 0) = 0 \) for all \(s \).
Initialize \(\pi^*(s, h) = \text{null} \) for all \(s, h \).
for \(h = 1, \ldots, H \) do
 for each state \(s \) do
 \[V^*(s, h) \leftarrow \max_a R(s, a) + V^*(T(s, a), h - 1). \]
 \[\pi^*(s, h) \leftarrow \arg\max_a R(s, a) + V^*(T(s, a), h - 1). \]
 end for
end for
Return \(\pi^* \).
Extensions

- Works without timer (under some conditions)
Extensions

- Works without timer (under some conditions)
- Also works for stochastic (Markov) Decision Processes
Extensions

- Works without timer (under some conditions)
- Also works for stochastic (Markov) Decision Processes
- Reinforcement learning: Compute optimal policy when you don’t know T, R