Algorithm Design Techniques

- Greedy
- Divide and Conquer
- Dynamic Programming
- Network Flows

Dynamic Programming Schedule

- Today: Intro + Scheduling and Packing
- Thursday: Sequence Alignment + Biology problems
- 10/25: Graph problems
- 10/27: AI + Statistics problems

Divide and Conquer Recipe

- Devise recursive form for solution
- Implement recursion

Example Compute sum of leaf weights for each internal node in \(k \)-ary tree. (From practice exam)

- Recursive form \(w(v) = \sum_{u \text{ child of } v} w(u) \).

Dynamic Programming Recipe

- Devise recursive form for solution
- Observe that recursive implementation involves redundant computation. (Often exponential time)
- Design **iterative algorithm** that solves all subproblems without redundancy.

Example (From HW1)

Problem. Given array \(A \) of length \(n \), compute matrix \(B \) with \(B[i, j] = A[i] + \ldots + A[j] \) for \(i < j \).

```plaintext
for i = 1, 2, \ldots, n do
    for j = i + 1, \ldots, n do
    end for
end for
```

Running time: \(\Theta(n^2) \).
Example (From HW1)

$$B[i, j] = \begin{cases} B[i, j - 1] + A[j] & \text{if } j > i \\ 0 & \text{if } j \leq i \end{cases}$$

for $i = 1, 2, \ldots, n$ do
 $B[i, i] = 0$
 for $j = i + 1, \ldots, n$ do
 end for
end for

Running time: $O(n^2)$

Weighted Interval Scheduling

- **Television scheduling problem:** Given n shows with start time s_i and finish time f_i, watch as many shows as possible, with no overlap.
- **A Twist:** Each show has a value v_i and want a set of shows S, with no overlap and maximum value $\sum_{i \in S} v_i$.
- **Greedy?**

Recursive Form

Order shows by finish time $f_1 \leq f_2, \ldots, f_n$.
Compute $p(i) = \max\{j : f_j \leq s_i\}$ for all i.

- Suppose O is an optimal solution ($O = \text{OPT}(n)$).
 - If $n \in O$, then $O = \text{OPT}(p(n)) \cup \{n\}$.
 - If $n \notin O$ then $O = \text{OPT}(n - 1)$.
- Define $V = \text{VAL}(n)$ to be the optimal value.
 - If $n \in O$, then $V = \text{VAL}(p(n)) + v_n$.
 - If $n \notin O$, then $V = \text{VAL}(n - 1)$.

Recurrence $\text{VAL}(n) = \max(\text{VAL}(p(n)) + v_n, \text{VAL}(n - 1))$.

Unrolling recurrence?

$\text{Val}(j)$:
If $j = 0$ return 0.
Return $\max\{\text{Val}(p(j)) + v_j, \text{Val}(j - 1)\}$.

$\text{Val}(n)$ can require 2^n calls in the worst case.
Only $n + 1$ values to compute \Rightarrow redundancy!

Memoized approach

Idea. Save the output of recursive calls when you do them.

Array $M[0..n] = \text{null}$.

$M\text{-Val}(j)$:
If $j = 0$ return 0.
If $j \neq \text{null}$, return $M[j]$.
$M[j] \leftarrow \max(v_j + M\text{-Val}(p(j)), M\text{-Val}(j - 1))$.
Return $M[j]$.

Running time: $O(n)$.

Iterative approach

Idea. Work from $0 \rightarrow n$ computing array entries only once.

Array $M[0..n] = \text{null}$.

$I\text{-All-Val}(n)$:
$M[0] = 0$.
for $j = 1, \ldots, n$ do
 $M[j] \leftarrow \max(v_j + M[p(j)], M[j - 1])$.
end for

Running time: $O(n)$.
Finding the optimum set

- Suppose \(O \) is an optimal solution \((O = OPT(n)) \).
 - If \(n \in O \), then \(O = OPT(p(n)) \cup \{n\} \).
 - If \(n \notin O \) then \(O = OPT(n - 1) \).

Weighted-IS(n)

Sort by finish time \(f_j \), compute \(p(j) \).

1. **MΩI-All-Val(n)**
 - # Compute \(M \) array
 - \(S \leftarrow \{ \}, j = n \)
 - while \(j \neq 0 \) do
 - if \(M[p(j)] + v_j \geq M[j - 1] \), \(S \leftarrow S \cup \{j\}, j \leftarrow p(j) \).
 - else \(j \leftarrow j - 1 \).
 - end while
 - Return \(S \).

Subset Sum

Problem. Given \(n \) jobs where job \(i \) requires \(w_i \) minutes of time and a budget \(W \).

- Find subset \(S \) that maximizes \(\sum_{i \in S} w_i \) and has \(\sum_{i \in S} w_i \leq W \).
- Greedy? Divide and Conquer?

Solution Recurrence

Let \(O \) be the optimal solution.

- If \(n \notin O \) then \(O \) is optimal solution using \(\{1, \ldots, n - 1\} \).
- If \(n \in O \) then \(O \) is optimal solution using \(\{1, \ldots, n - 1\} \) and budget \(W - w_n \).

\[
VAL(j, W) = \max\{VAL(j - 1, W), w_j + VAL(j - 1, W - w_j)\}
\]

Unless \(W < w_j \), then \(VAL(j, W) = VAL(j - 1, W) \).

Need to track both jobs and remaining budget.

Example

\(w_1 = 2, w_2 = 2, w_3 = 1, W = 4 \)

\[
M[j, w] \leftarrow \max\{M[j - 1, w], w_j + M[j - 1, w - w_j]\}
\]

\[
\begin{array}{cccccc}
 w & 0 & 1 & 2 & 3 & 4 \\
 j = 0 & 0 & 0 & 0 & 0 & 0 \\
 j = 1 & 0 & 0 & 2 & 2 & 2 \\
 j = 2 & 0 & 2 & 2 & 4 & 4 \\
 j = 3 & 3 & 1 & 2 & 3 & 4 \\
\end{array}
\]
Another Example

\[w_1 = 2, w_2 = 2, w_3 = 3, W = 4 \]

\[M[j, w] \leftarrow \max\{ M[j - 1, w], w_j + M[j - 1, w - w_j] \} \]

<table>
<thead>
<tr>
<th></th>
<th>(w = 0)</th>
<th>(w = 1)</th>
<th>(w = 2)</th>
<th>(w = 3)</th>
<th>(w = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j = 3)</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(j = 2)</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(j = 1)</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(j = 0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Finding Optimal Solution

- Similar to weighted interval scheduling.
- Walk table from \(M[n, W] \), following the entry you are based on.

\[w_1 = 2, w_2 = 2, w_3 = 3, W = 4 \]

<table>
<thead>
<tr>
<th></th>
<th>(w = 0)</th>
<th>(w = 1)</th>
<th>(w = 2)</th>
<th>(w = 3)</th>
<th>(w = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j = 3)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(j = 2)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>(j = 1)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(j = 0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Running Time

- Table has \(O(nW) \) entries, each entry requires \(O(1) \) computation.
- Finding optimal solution takes \(O(n) \) time with table.
- Not polynomial in size of the input, since \(W \) can be specified in \(\log_2 W \) bits. \(Pseudo-polynomial \ time \)

Dynamic Programming Takeways

- Identify recurrence for solution.
- Often easier to compute optimal value.
- Build DP table.
- Extract optimal solution from table.
- Analyze running time.