Minimum Distance Algorithm
- Divide points P with a vertical line into P_L and P_R where $|P_L| = |P_R| = n/2$
- Recursively find minimum distance within P_L and P_R:
 $$\delta_L = \min_{p \in P_L \land p \not\in P_R} d(p, q)$$
 $$\delta_R = \min_{p \in P_R \land p \not\in P_L} d(p, q)$$
- Compute $\delta_M = \min_{p \in P_L \land q \in P_R} d(p, q)$ and return $\min(\delta_L, \delta_R, \delta_M)$
- We’ll show who to do Step 3 in $O(n)$ time, which gives $T(n) \leq 2T(n/2) + O(n) \implies T(n) = O(n \log n)$

Making Step 3 Efficient
- Need to find $\min(\delta_L, \delta_R, \delta_M)$ where $\delta_M = \min_{p \in P_L \land q \in P_R} d(p, q)$
- Suppose that the dividing line is $x = m$ and $\delta = \min(\delta_L, \delta_R)$
- Once we know δ, only need $O(n)$ comparisons to find $\min(\delta, \delta_M)$
 - Only compare $(p_1, p_2) \in P_L$, $(q_1, q_2) \in P_R$ if $m - \delta < p_1 < q_1 < m + \delta$ and $|p_2 - q_2| < \delta$
- Each point $p \in P_L$ only gets compared with $O(1)$ points in P_R
- Need to identify the relevant comparisons in $O(n)$ time
- Make two copies of points sorted by each coordinate
- Ensure both lists are passed to each recursion sorted
- Given sorted lists, it’s easy to find the relevant points

Divide and Conquer Algorithms Recap
- Given a problem of an input of size n,
 - We generate (multiple) smaller instances of the problem
 - We solve each of these smaller instances
 - We use the solutions of the small instances to solve the original problem.
- Suppose that the first and third steps can be performed in $O(n^\alpha)$ time. If there are a smaller instances generated, each of size $n/2$, then the running time $T(n)$ of the algorithm satisfies the recurrence.
 $$T(n) \leq aT(n/2) + O(n^\alpha)$$

Divide and Conquer: Recurrences
- Suppose $T(n) \leq aT(n/2) + n^\alpha$ and $T(1) \leq 1$. Then:
 $$T(n) = \begin{cases}
 O(n^\alpha) & \text{if } \alpha > \log_2 a \\
 O(n \log_2 n) & \text{if } \alpha < \log_2 a \\
 O(n^\alpha \log n) & \text{if } \alpha = \log_2 a
 \end{cases}$$
- If you forget this formula just apply the “unrolling method”:
 $$T(n) \leq aT(n/2) + n^\alpha$$
 $$\leq a(aT(n/4) + (n/2)^\alpha) + n^\alpha$$
 $$\leq a(a(aT(n/8) + (n/4)^\alpha) + (n/2)^\alpha) + n^\alpha$$
 $$\leq ...$$
- Some example recurrence: $T(n) \leq T(n/2) + 1$ and $T(n) \leq 4T(n/2) + n$
- Another a divide and conquer example: counting inversions.

Greedy Algorithms
- Greedy algorithms are “short sighted” algorithms that take each step based on what looks good in the short term.
- Example: Kruskal’s Algorithm adds lightest edge that doesn’t complete a cycle when building an MST.
- Example: When maximizing the number of non-overlapping TV shows we always added the show that finished earliest out of the remaining shows.
- Things to note:
 - If a greedy algorithm requires first sorting the input, remember to include the running time of sorting in your overall analysis.
 - Usually greedy algorithms can easily be shown to be poly-time but often extra work is required to get the most efficient implementation, e.g., union-find data structure.
 - Correctness proofs can be tricky: saw proofs by contradiction and induction, rearrangement arguments, some graph theory.
 - Another example: minimizing number of coins when giving someone change.
Graph Algorithms: BFS and DFS Trees

- BFS trees with root \(r \):
 - Partitions the nodes into levels \(L_0 = \{r\}, L_1, L_2, L_3 \ldots \) where \(L_i \) consists of all neighbors of nodes in \(L_{i-1} \) that aren’t already in \(L_0 \cup L_1 \cup \ldots \cup L_{i-1} \).
 - If \(v \in L_i \), the length of the shortest path in the original graph between \(r \) and \(v \) is \(i \).
 - For any edge \((u, v)\) in the original graph, \(u \) and \(v \) are in the same level or adjacent levels.

- DFS trees with root \(r \):
 - For any edge \((u, v)\) in the original graph, \(u \) is an ancestor of \(v \) in the tree or vice versa.
 - Can be used to find the connected components of a graph and test whether the graph is bipartite.
 - A directed graph is acyclic if there is no directed cycle. There is no directed cycle iff there is a topological ordering. Can find a topological order using the fact that a DAG has a node with no incoming edges.

Asymptotic Analysis

Given two positive functions \(f(n) \) and \(g(n) \):

- \(f(n) = O(g(n)) \) iff \(f(n)/g(n) \) tends to some constant \(c \geq 0 \) as \(n \to \infty \)
- \(f(n) = \Omega(g(n)) \) iff \(g(n)/f(n) \) tends to some constant \(c \geq 0 \) as \(n \to \infty \)
- \(f(n) = \Theta(g(n)) \) iff \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \).