Consider an undirected connected graph $G = (V, E)$ where each edge e has weight $w(e)$.

- Given a subset of edges $A \subseteq E$, define $w(A) = \sum_{e \in A} w(e)$ to be the total weight of the edges in A.
- A spanning tree of G is a tree T that contains all nodes in G.

Problem: Can we efficiently find the minimum spanning tree (MST), i.e., spanning tree with minimum total weight?

- For simplicity, we will assume all edges have distinct weights.

Greedy Approaches

- Consider the following greedy approaches:

 - Sort the edges by increasing weight.

 - Add next edge that doesn’t complete a cycle.

 - Sort the edges by increasing weight.

 - Let $S = \{s\}$.

 - Add next edge (u, v) where $u \in S, v \not\in S$. Add v to S.

 - Sort the edges by decreasing weight. Remove the next edge that doesn’t disconnect the graph.

 - Which approach constructs a minimum spanning tree? All of them! We’ll prove correctness for the first two.

Important Lemma: Finding edges in MST

- **Cut Lemma:** Let $S \subseteq V$ and let $e = (u, v)$ be the lightest edge such that $u \in S$ and $v \not\in S$. The MST contains edge e.

- Suppose T is a spanning tree that doesn’t include e. We’ll construct a different spanning tree $T’$ such that $w(T’) < w(T)$ and hence $T’$ can’t be the MST.

- Since T is a spanning tree, there’s a $u \leadsto v$ path P in T. Since the path starts in S and ends up outside S, there must be an edge $e’ = (u’, v’)$ on this path where $u’ \in S, v’ \not\in S$.

- Let $T’ = T - \{e’\} + \{e\}$. This is a still spanning tree, since any path in $T’$ that needed $e’$ can be routed via e instead. But since e was the lightest edge between S and $V \setminus S$,

 $$w(T’) = w(T) - w(e’) + w(e) \leq w(T) - w(e’) + w(e’) = w(T)$$

Prim’s Algorithm

- **Prim’s Algorithm:** Sort the edges by increasing weight.

 - Let $S = \{s\}$.

 - While $S \neq V$: Add next edge (u, v) where $u \in S, v \not\in S$ and add v to S.

- **Proof of Correctness:**

 - Let S be the set of nodes in the tree constructed so far.

 - The next edge added to the tree is the lightest edge between S and $V \setminus S$. Hence, the cut lemma implies e must be in the MST.

Kruskal’s Algorithm

- **Kruskal’s Algorithm:** Sort the edges by increasing weight and keep on add the next edge that doesn’t complete a cycle.

- **Proof of Correctness:**

 - Suppose $e = (u, v)$ is the next edge added.

 - Let S be the set of nodes that can be reached from u before e was added. Note that $v \not\in S$ since otherwise adding e would have completed a cycle.

 - No other edge between S and $V \setminus S$ can have been encountered before since if it had it would have been added since it doesn’t complete a cycle. Hence e is the lightest edge between S and $V \setminus S$. Therefore, the cut lemma implies e must be in the MST.
Kruskal Implementation: Union-Find

Idea: use clever data structure to maintain connected components of growing spanning tree. Should support the following operation:

- **Find(v):** return name of set containing v
- **Union(A, B):** merge two sets

where A and B will correspond to connected components of the edges that have been added so far.

```plaintext
for each edge e do
    Let u and v be endpoints of e
    if find(u) != find(v) then
        T = T ∪{e}
        Union(find(u), find(v))
    end if
end for
```

Union-Find Method

- **Make-Set(v):** Takes $O(1)$ time to add a single node.
- **Find(v):** Takes $O(1)$ time to follow pointer to label.
- **Union-Set(u, v):** $O(size\ of\ smaller\ set)$.
 - Update "next" pointer at end of longer list to point to start of shorter list
 - Update "label" pointers of shorter list to point to label of other list
 - Update auxiliary pointers and size information

Union-Find Analysis

Theorem: Consider a sequence of m operations including n Make-Set operations. Total running time is $O(m + n \log n)$.

- Total time from Find and Make-Set: $O(m)$
- Total time from Union: $O(n \log n)$
 - Updating next pointers: $O(n)$
 - Updating label pointers: $O(n \log n)$ because the label pointer for a node can be updated at most $\log_2 n$ times.

Hence, Kruskal’s algorithm can be implemented in time

$$O(m \log m) + O(m + n \log n) = O(m \log m)$$