
CMPSCI 311: Introduction to Algorithms

Akshay Krishnamurthy and Andrew McGregor

University of Massachusetts

Last Compiled: September 15, 2016

Plan

I Review:
I Breadth First Search
I Depth First Search

I Traversal Implementation and Running Time
I Traversal Applications
I Directed Graphs

Recall

I Graph G = (V, E)
I Set of nodes V of size n
I Set of edges E of size m

Adjacency List Representation

Adjacency List Representation.
I Nodes numbered 1, . . . , n.
I Adj[v] points to a list of all of v’s neighbors.

BFS Description

Define layer Li = all nodes at distance exactly i from s.
Layers
I L0 = {s}
I L1 = all neighbors of L0
I L2 = all nodes with an edge to L1 that don’t belong to L0 or L1
I . . .
I Li+1 = nodes with an edge to Li that don’t belong to any earlier

layer.

Li+1 = {v : ∃(u, v) ∈ E, u ∈ Li, v /∈ (L0 ∪ . . . ∪ Li)}

DFS Descriptions

Depth-first search: keep exploring from the most recently discovered
node until you have to backtrack.
DFS(u)
Mark u as "Explored"
for each edge (u, v) incident to u do

if v is not marked "Explored" then
Recursively invoke DFS(v)

end if
end for

Traversal Implementations

Maintain set of explored nodes and discovered
I Explored = have seen this node and explored its outgoing edges

I Discovered = the “frontier”. Have seen the node, but not
explored its outgoing edges.

Generic Graph Traversal

Let A = data structure of discovered nodes
Traverse(s)
Put s in A
while A is not empty do

Take a node v from A
if v is not marked “explored" then

Mark v as “explored"
for each edge (v, w) incident to v do

Put w in A . w is discovered
end for

end if
end while

Note: one part of this algorithm seems really dumb. Why?
Can put multiple copies of a single node in A.

Generic Graph Traversal

Let A = data structure of discovered nodes
Traverse(s)

Put s in A
while A is not empty do

Take a node v from A
if v is not marked “explored" then

Mark v as “explored"
for each edge (v, w) incident to v do

Put w in A . w is discovered
end for

end if
end while

BFS: A is a queue (FIFO)
DFS: A is a stack (LIFO)

Interlude (Data Structures)

Linked List:

Head

o1 o2 o3 o4 o5 o6

Tail

I Always remove items from front (Head)
I Queue: Insert at Tail (FIFO)
I Stack: Insert at Head (LIFO)
I Insert/Removal are O(1) operations.

BFS Implementation

Let A = empty Queue structure of discovered nodes
Traverse(s)

Put s in A
while A is not empty do

Take a node v from A
if v is not marked “explored" then

Mark v as “explored"
for each edge (v, w) incident to v do

Put w in A . w is discovered
end for

end if
end while

Is this actually BFS? Yes
Running time: O(n + m)

BFS Running Time

I Naive O(n2)
I Smarter O(n + m)

DFS Implementation

Let A = empty Stack structure of discovered nodes
Traverse(s)

Put s in A
while A is not empty do

Take a node v from A
if v is not marked “explored" then

Mark v as “explored"
for each edge (v, w) incident to v do

Put w in A . w is discovered
end for

end if
end while

Is this actually DFS? Yes
What’s the running time?

Back to Connected Components

FindCC(G)
while There is some unexplored node s do

BFS(s)
Extract connected component C(s).

end while
Running time for finding connected components?
Naive: O(m + n) for each component ⇒ O(c(m + n)) if c
components.
Better:
I BFS on component C only works on nodes/edges in C.
I Running time is O(∑C |V (C)| + |E(C)|) = O(m + n).

Bipartite Graphs

Definition Graph G = (V, E) is bipartite if V can be partitioned
into sets X, Y such that every edge has one end in X and one in Y .
Example Student-College Graph in stable matching
Counter example Cycle of length k for k odd.
Claim If G is bipartite then it cannot contain an odd cycle.

Bipartite Testing

Question Given G = (V, E), is G bipartite?

How do we design an algorithm to test bipartiteness?

I BFS(s) for any s, keep track of layers.
I Nodes in odd layers get color blue, even get color red.
I After, check all edges have different colored endpoints.

Running time? O(n + m).

Analysis of Bipartite Testing

Claim After running BFS on a connected graph G, either,
I There are no edges between two nodes of the same layer ⇒ G is

bipartite.
I There is an edge between two nodes of the same layer ⇒ G has

an odd cycle, is not bipartite.

G bipartite if and only if no odd cycles.

Directed Graphs

I Directed Graph G = (V, E).
I V is a set of vertices/nodes.
I E is a set of ordered pairs (u, v).

I Express asymmetrical relationship
Examples Twitter network, course schedule, web graph.

Adjacency Lists

Maintain two lists.
I Enter[v] contains all edges pointing to v.
I Leave[v] contains all edges pointing from v.

Strong Connectivity

Definition G is strongly connected if for every u, v ∈ V , there is a
path from u to v and from v to u.
Problem Test if G is strongly connected?
Definition The strongly connected component containing vertex s
is the set of all nodes with paths to and from s.
Think about Can you find all SCCs in linear time?

Directed Acyclic Graphs

Definition A directed acyclic graph (DAG) is a directed graph with
no cycles.
Example Course prerequisites

Math132

CS187

CS220

CS240

CS250

CS311

CS383

Topological Sorting

Math132

CS187

CS220

CS240

CS250

CS311

CS383

Can you find a way to take all of the courses?

Topological Sorting

Definition A topological ordering of G = (V, E) is an ordering
v1, v2, . . . , vn of the nodes, such that for all edges (vi, vj) ∈ E, we
must have i < j.

M132 C187 C220 C240 C250 C311 C383
Claim If G has a topological ordering, then G is a DAG.

Topological sorting

Problem Given DAG G, compute a topological ordering for G.
I Does one always exist?
topo-sort(G)
while there are nodes remaining do

Find a node v with no incoming edges
Place v next in the order
Delete v and all of its outgoing edges from G

end while

Running time? O(n2 + m) easy, O(m + n) more clever.

Topological Sorting Analysis

I In a DAG, there is always a node v with no incoming edges.
I Removing a node v from a DAG, produces a new DAG.
I Any node with no incoming edges can be first in topological

ordering.

Theorem G is a DAG if and only if G has a topological ordering.

Graphs Summary

I Graph Traversal
I BFS/DFS, Connected Components, Bipartite Testing
I Traversal Implementation and Analysis

I Directed Graphs
I Strong Connectivity
I Directed Acyclic Graphs
I Topological ordering

