Plan

- Review:
 - Breadth First Search
 - Depth First Search
 - Traversal Implementation and Running Time
 - Traversal Applications
 - Directed Graphs

Recall

- Graph $G = (V, E)$
- Set of nodes V of size n
- Set of edges E of size m

Adjacency List Representation

- Nodes numbered $1, \ldots, n$.
- $\text{Adj}[v]$ points to a list of all of v’s neighbors.

BFS Description

Define layer $L_i =$ all nodes at distance exactly i from s.

Layers

- $L_0 = \{s\}$
- $L_1 =$ all neighbors of L_0
- $L_2 =$ all nodes with an edge to L_1 that don’t belong to L_0 or L_1
- \ldots
- $L_{i+1} =$ nodes with an edge to L_i that don’t belong to any earlier layer.

$$L_{i+1} = \{v : \exists (u, v) \in E, u \in L_i, v \notin (L_0 \cup \ldots \cup L_i)\}$$

DFS Descriptions

Depth-first search: keep exploring from the most recently discovered node until you have to backtrack.

DFS(u)

Mark u as "Explored"

for each edge (u, v) incident to u do

if v is not marked "Explored" then

 Recursively invoke DFS(v)

end if

end for
Traversals Implementations

Maintain set of explored nodes and discovered

- Explored = have seen this node and explored its outgoing edges
- Discovered = the “frontier”. Have seen the node, but not explored its outgoing edges.

Generic Graph Traversal

Let \(A \) = data structure of discovered nodes
Traverse(s)
Put s in A
while A is not empty do
Take a node v from A
if v is not marked “explored” then
Mark v as “explored”
for each edge \((v, w)\) incident to v do
Put w in A \(\triangleright w\) is discovered
end for
end if
end while
Note: one part of this algorithm seems really dumb. Why?
Can put multiple copies of a single node in \(A \).

Interlude (Data Structures)

Linked List:
Head
\(o_1 o_2 o_3 o_4 o_5 o_6 \)
Tail
\(\triangleright \)
- Always remove items from front (Head)
- Queue: Insert at Tail (FIFO)
- Stack: Insert at Head (LIFO)
- Insert/Removal are \(O(1) \) operations.

BFS Implementation

Let \(A \) = empty Queue structure of discovered nodes
Traverse(s)
Put s in A
while A is not empty do
Take a node v from A
if v is not marked “explored” then
Mark v as “explored”
for each edge \((v, w)\) incident to v do
Put w in A \(\triangleright w\) is discovered
end for
end if
end while
Is this actually BFS? Yes
Running time: \(O(n + m) \)

BFS Running Time

- Naive \(O(n^2) \)
- Smarter \(O(n + m) \)
DFS Implementation

Let \(A = \) empty Stack structure of discovered nodes
Traverse\((s)\)

- Put \(s \) in \(A \)
 - while \(A \) is not empty do
 - Take a node \(v \) from \(A \)
 - if \(v \) is not marked “explored” then
 - Mark \(v \) as “explored”
 - for each edge \((v, w)\) incident to \(v \) do
 - Put \(w \) in \(A \)
 \(\triangleright \) \(w \) is discovered
 - end for
 - end if
 - end while

Is this actually DFS? Yes
What’s the running time?

Back to Connected Components

FindCC\((G)\)

- while There is some unexplored node \(s \) do
 - BFS\((s)\)
 - Extract connected component \(C(s) \)
 - end while

Running time for finding connected components?
Naive: \(O(m + n) \) for each component \(\Rightarrow O(c(m + n)) \) if \(c \) components.
Better:
 - BFS on component \(C \) only works on nodes/edges in \(C \).
 - Running time is \(O(\sum C |V(C)| + |E(C)|) = O(m + n)) \).

Bipartite Graphs

Definition Graph \(G = (V, E) \) is bipartite if \(V \) can be partitioned into sets \(X, Y \) such that every edge has one end in \(X \) and one in \(Y \).

Example Student-College Graph in stable matching
Counter example Cycle of length \(k \) for \(k \) odd.

Claim If \(G \) is bipartite then it cannot contain an odd cycle.

Bipartite Testing

Question Given \(G = (V, E) \), is \(G \) bipartite?

How do we design an algorithm to test bipartiteness?

- BFS\((s)\) for any \(s \), keep track of layers.
- Nodes in odd layers get color blue, even get color red.
- After, check all edges have different colored endpoints.

 Running time? \(O(n + m) \).

Analysis of Bipartite Testing

Claim After running BFS on a connected graph \(G \), either,
 - There are no edges between two nodes of the same layer \(\Rightarrow G \) is bipartite.
 - There is an edge between two nodes of the same layer \(\Rightarrow G \) has an odd cycle, is not bipartite.

 \(G \) bipartite if and only if no odd cycles.

Directed Graphs

- Directed Graph \(G = (V, E) \).
- \(V \) is a set of vertices/nodes.
- \(E \) is a set of ordered pairs \((u, v)\).
- Express asymmetrical relationship

Examples Twitter network, course schedule, web graph.
Adjacency Lists

Maintain two lists.
- Enter$[v]$ contains all edges pointing to v.
- Leave$[v]$ contains all edges pointing from v.

Strong Connectivity

Definition G is strongly connected if for every $u, v \in V$, there is a path from u to v and from v to u.

Problem Test if G is strongly connected?

Definition The strongly connected component containing vertex s is the set of all nodes with paths to and from s.

Think about Can you find all SCCs in linear time?

Directed Acyclic Graphs

Definition A directed acyclic graph (DAG) is a directed graph with no cycles.

Example Course prerequisites
- Math132
- CS187
- CS220
- CS240
- CS250
- CS311
- CS383

Can you find a way to take all of the courses?

Topological Sorting

Definition A topological ordering of $G = (V, E)$ is an ordering v_1, v_2, \ldots, v_n of the nodes, such that for all edges $(v_i, v_j) \in E$, we must have $i < j$.

Claim If G has a topological ordering, then G is a DAG.

Problem Given DAG G, compute a topological ordering for G.
- Does one always exist?

\begin{algorithm}
\textbf{topo-sort}(G)
\begin{algorithmic}
\While{there are nodes remaining}
\State Find a node v with no incoming edges
\State Place v next in the order
\State Delete v and all of its outgoing edges from G
\EndWhile
\EndAlgorithm
\end{algorithmic}
\end{algorithm}

Running time? $O(n^2 + m)$ easy, $O(m + n)$ more clever.
Topological Sorting Analysis

- In a DAG, there is always a node \(v \) with no incoming edges.
- Removing a node \(v \) from a DAG, produces a new DAG.
- Any node with no incoming edges can be first in topological ordering.

Theorem \(G \) is a DAG if and only if \(G \) has a topological ordering.

Graphs Summary

- Graph Traversal
- BFS/DFS, Connected Components, Bipartite Testing
- Traversal Implementation and Analysis
- Directed Graphs
- Strong Connectivity
- Directed Acyclic Graphs
- Topological ordering