CMPSCI 311: Introduction to Algorithms

Akshay Krishnamurthy and Andrew McGregor

University of Massachusetts

Last Compiled: September 15, 2016

Plan

> Review:

» Breadth First Search
» Depth First Search

v

Traversal Implementation and Running Time
Traversal Applications
Directed Graphs

vy

Recall

» Graph G = (V,E)
> Set of nodes V' of size n
> Set of edges E of size m

Adjacency List Representation

Adjacency List Representation.

» Nodes numbered 1,...,n.

> Adj[v] points to a list of all of v's neighbors.

BFS Description

Define layer L; = all nodes at distance exactly i from s.

Layers

Lo ={s}

Ly = all neighbors of Ly

Lo = all nodes with an edge to L; that don't belong to Ly or L

vyvyvYyYVvYyy

L;1+1 = nodes with an edge to L; that don't belong to any earlier
layer.

Lipi={v:3(u,v) e BE,ue Lj,v¢ (LoU...UL;)}

DFS Descriptions

Depth-first search: keep exploring from the most recently discovered
node until you have to backtrack.

DFS(u)
Mark v as "Explored"
for each edge (u,v) incident to u do
if v is not marked "Explored" then
Recursively invoke DFS(v)
end if
end for

Traversal Implementations

Maintain set of explored nodes and discovered
» Explored = have seen this node and explored its outgoing edges

» Discovered = the “frontier”. Have seen the node, but not
explored its outgoing edges.

Generic Graph Traversal

Let A = data structure of discovered nodes
Traverse(s)
Put sin A
while A is not empty do
Take a node v from A
if v is not marked “explored" then
Mark v as “explored"
for each edge (v, w) incident to v do
Put win A
end for
end if
end while

> w is discovered

Note: one part of this algorithm seems really dumb. Why?
Can put multiple copies of a single node in A.

Generic Graph Traversal

Let A = data structure of discovered nodes
Traverse(s)
Put sin A
while A is not empty do
Take a node v from A
if v is not marked “explored" then
Mark v as “explored"
for each edge (v, w) incident to v do
Put win A
end for
end if
end while
BFS: A is a queue (FIFO)
DFS: A is a stack (LIFO)

> w is discovered

Interlude (Data Structures)

Linked List:

Head Tail

oo Do

01 02 03 04 05 06

Always remove items from front (Head)
Queue: Insert at Tail (FIFO)

Stack: Insert at Head (LIFO)
Insert/Removal are O(1) operations.

vvyVvyy

BFS Implementation

Let A = empty Queue structure of discovered nodes
Traverse(s)
Put sin A
while A is not empty do
Take a node v from A
if v is not marked “explored" then
Mark v as “explored"
for each edge (v, w) incident to v do
Put win A
end for
end if
end while
Is this actually BFS? Yes
Running time: O(n + m)

> w is discovered

BFS Running Time

> Naive O(n?)
» Smarter O(n + m)

DFS Implementation

Let A = empty Stack structure of discovered nodes
Traverse(s)
Put sin A
while A is not empty do
Take a node v from A
if v is not marked “explored" then
Mark v as “explored"
for each edge (v, w) incident to v do
Put win A
end for
end if
end while

Is this actually DFS? Yes
What's the running time?

> w is discovered

Back to Connected Components

FindCC(G)
while There is some unexplored node s do
BFS(s)
Extract connected component C(s).
end while
Running time for finding connected components?
Naive: O(m + n) for each component = O(c(m +n)) if ¢
components.
Better:

» BFS on component C only works on nodes/edges in C'.
> Running time is O(X_¢ |V(C)| + |E(C)]) = O(m + n).

Bipartite Graphs

Definition Graph G = (V, E) is bipartite if V can be partitioned

into sets X, Y such that every edge has one end in X and one in Y.

Example Student-College Graph in stable matching
Counter example Cycle of length & for k£ odd.

Claim If G is bipartite then it cannot contain an odd cycle.

Bipartite Testing

Question Given G = (V, E), is G bipartite?

How do we design an algorithm to test bipartiteness?
» BFS(s) for any s, keep track of layers.
» Nodes in odd layers get color blue, even get color red.

» After, check all edges have different colored endpoints.

Running time? O(n 4+ m).

Analysis of Bipartite Testing

Claim After running BFS on a connected graph G, either,

> There are no edges between two nodes of the same layer = G is
bipartite.

> There is an edge between two nodes of the same layer = G has
an odd cycle, is not bipartite.

G bipartite if and only if no odd cycles.

Directed Graphs

> Directed Graph G = (V, E).
» V is a set of vertices/nodes.
» Eis a set of ordered pairs (u,v).

» Express asymmetrical relationship

Examples Twitter network, course schedule, web graph.

Adjacency Lists

Maintain two lists.

» Enter[v] contains all edges pointing to v.
» Leave[v] contains all edges pointing from v.

Strong Connectivity

Definition G is strongly connected if for every u,v € V, there is a
path from u to v and from v to wu.

Problem Test if G is strongly connected?

Definition The strongly connected component containing vertex s
is the set of all nodes with paths to and from s.

Think about Can you find all SCCs in linear time?

Directed Acyclic Graphs

Definition A directed acyclic graph (DAG) is a directed graph with
no cycles.
Example Course prerequisites

Topological Sorting

CS250
Can you find a way to take all of the courses?

Topological Sorting

Definition A topological ordering of G = (V, E) is an ordering
V1,02, ...,y of the nodes, such that for all edges (v;,v;) € E, we
must have ¢ < j.

<

M132 C187 C220 C240 C250 C311 (383
Claim If G has a topological ordering, then G is a DAG.

Topological sorting

Problem Given DAG G, compute a topological ordering for G.
» Does one always exist?

topo-sort(G)
while there are nodes remaining do
Find a node v with no incoming edges
Place v next in the order
Delete v and all of its outgoing edges from G
end while

Running time? O(n? +m) easy, O(m + n) more clever.

Topological Sorting Analysis

> In a DAG, there is always a node v with no incoming edges.

» Removing a node v from a DAG, produces a new DAG.

» Any node with no incoming edges can be first in topological
ordering.

Theorem G is a DAG if and only if G has a topological ordering.

Graphs Summary

» Graph Traversal

» BFS/DFS, Connected Components, Bipartite Testing
> Traversal Implementation and Analysis

» Directed Graphs
» Strong Connectivity

» Directed Acyclic Graphs
» Topological ordering

