

CMPSCI 311: Introduction to Algorithms

Akshay Krishnamurthy and Andrew McGregor

University of Massachusetts

Last Compiled: September 15, 2016

Plan

- ▶ Review:
 - ▶ Breadth First Search
 - ▶ Depth First Search
- ▶ Traversal Implementation and Running Time
- ▶ Traversal Applications
- ▶ Directed Graphs

Recall

- ▶ Graph $G = (V, E)$
- ▶ Set of nodes V of size n
- ▶ Set of edges E of size m

Adjacency List Representation

Adjacency List Representation.

- ▶ Nodes numbered $1, \dots, n$.
- ▶ $\text{Adj}[v]$ points to a list of all of v 's neighbors.

BFS Description

Define **layer** L_i = all nodes at distance exactly i from s .

Layers

- ▶ $L_0 = \{s\}$
- ▶ L_1 = all neighbors of L_0
- ▶ L_2 = all nodes with an edge to L_1 that don't belong to L_0 or L_1
- ▶ \dots
- ▶ L_{i+1} = nodes with an edge to L_i that don't belong to any earlier layer.

$$L_{i+1} = \{v : \exists(u, v) \in E, u \in L_i, v \notin (L_0 \cup \dots \cup L_i)\}$$

DFS Descriptions

Depth-first search: keep exploring from the most recently discovered node until you have to backtrack.

```
DFS( $u$ )
  Mark  $u$  as "Explored"
  for each edge  $(u, v)$  incident to  $u$  do
    if  $v$  is not marked "Explored" then
      Recursively invoke DFS( $v$ )
    end if
  end for
```

Traversal Implementations

Maintain set of **explored** nodes and **discovered**

- ▶ Explored = have seen this node and explored its outgoing edges
- ▶ Discovered = the "frontier". Have seen the node, but not explored its outgoing edges.

Generic Graph Traversal

Let A = data structure of discovered nodes

Traverse(s)

```

Put  $s$  in  $A$ 
while  $A$  is not empty do
  Take a node  $v$  from  $A$ 
  if  $v$  is not marked "explored" then
    Mark  $v$  as "explored"
    for each edge  $(v, w)$  incident to  $v$  do
      Put  $w$  in  $A$                                 ▷  $w$  is discovered
    end for
  end if
end while

```

Note: one part of this algorithm seems really dumb. Why?
Can put multiple copies of a single node in A .

Generic Graph Traversal

Let A = data structure of discovered nodes

Traverse(s)

```

Put  $s$  in  $A$ 
while  $A$  is not empty do
  Take a node  $v$  from  $A$ 
  if  $v$  is not marked "explored" then
    Mark  $v$  as "explored"
    for each edge  $(v, w)$  incident to  $v$  do
      Put  $w$  in  $A$                                 ▷  $w$  is discovered
    end for
  end if
end while

```

BFS: A is a queue (FIFO)

DFS: A is a stack (LIFO)

Interlude (Data Structures)

Linked List:

- ▶ Always remove items from front (Head)
- ▶ Queue: Insert at Tail (FIFO)
- ▶ Stack: Insert at Head (LIFO)
- ▶ Insert/Removal are $O(1)$ operations.

BFS Implementation

Let A = empty **Queue** structure of discovered nodes

Traverse(s)

```

Put  $s$  in  $A$ 
while  $A$  is not empty do
  Take a node  $v$  from  $A$ 
  if  $v$  is not marked "explored" then
    Mark  $v$  as "explored"
    for each edge  $(v, w)$  incident to  $v$  do
      Put  $w$  in  $A$                                 ▷  $w$  is discovered
    end for
  end if
end while

```

Is this actually BFS? Yes

Running time: $O(n + m)$

BFS Running Time

- ▶ Naive $O(n^2)$
- ▶ Smarter $O(n + m)$

DFS Implementation

```
Let  $A$  = empty Stack structure of discovered nodes
Traverse( $s$ )
  Put  $s$  in  $A$ 
  while  $A$  is not empty do
    Take a node  $v$  from  $A$ 
    if  $v$  is not marked "explored" then
      Mark  $v$  as "explored"
      for each edge  $(v, w)$  incident to  $v$  do
        Put  $w$  in  $A$                                  $\triangleright w$  is discovered
      end for
    end if
  end while
Is this actually DFS? Yes
What's the running time?
```

Back to Connected Components

```
FindCC( $G$ )
  while There is some unexplored node  $s$  do
    BFS( $s$ )
    Extract connected component  $C(s)$ .
  end while
  Running time for finding connected components?
  Naive:  $O(m + n)$  for each component  $\Rightarrow O(c(m + n))$  if  $c$  components.
  Better:
    ▶ BFS on component  $C$  only works on nodes/edges in  $C$ .
    ▶ Running time is  $O(\sum_C |V(C)| + |E(C)|) = O(m + n)$ .
```

Bipartite Graphs

Definition Graph $G = (V, E)$ is **bipartite** if V can be partitioned into sets X, Y such that every edge has one end in X and one in Y .

Example Student-College Graph in stable matching

Counter example Cycle of length k for k odd.

Claim If G is bipartite then it cannot contain an odd cycle.

Bipartite Testing

Question Given $G = (V, E)$, is G bipartite?

How do we design an algorithm to test bipartiteness?

- ▶ BFS(s) for any s , keep track of layers.
- ▶ Nodes in odd layers get color blue, even get color red.
- ▶ After, check all edges have different colored endpoints.

Running time? $O(n + m)$.

Analysis of Bipartite Testing

Claim After running BFS on a connected graph G , either,

- ▶ There are no edges between two nodes of the same layer $\Rightarrow G$ is bipartite.
- ▶ There is an edge between two nodes of the same layer $\Rightarrow G$ has an odd cycle, is not bipartite.

G bipartite if and only if no odd cycles.

Directed Graphs

- ▶ Directed Graph $G = (V, E)$.
- ▶ V is a set of vertices/nodes.
- ▶ E is a set of **ordered pairs** (u, v) .
- ▶ Express asymmetrical relationship

Examples Twitter network, course schedule, web graph.

Adjacency Lists

Maintain two lists.

- ▶ Enter $[v]$ contains all edges pointing to v .
- ▶ Leave $[v]$ contains all edges pointing from v .

Strong Connectivity

Definition G is **strongly connected** if for every $u, v \in V$, there is a path from u to v and from v to u .

Problem Test if G is strongly connected?

Definition The **strongly connected component** containing vertex s is the set of all nodes with paths to and from s .

Think about Can you find all SCCs in linear time?

Directed Acyclic Graphs

Definition A **directed acyclic graph (DAG)** is a directed graph with no cycles.

Example Course prerequisites

Topological Sorting

Can you find a way to take all of the courses?

Topological Sorting

Definition A **topological ordering** of $G = (V, E)$ is an ordering v_1, v_2, \dots, v_n of the nodes, such that for all edges $(v_i, v_j) \in E$, we must have $i < j$.

Claim If G has a topological ordering, then G is a DAG.

Topological sorting

Problem Given DAG G , compute a topological ordering for G .

- ▶ Does one always exist?

$\text{topo-sort}(G)$

while there are nodes remaining do

Find a node v with no incoming edges

Place v next in the order

Delete v and all of its outgoing edges from G

end while

Running time? $O(n^2 + m)$ easy, $O(m + n)$ more clever.

Topological Sorting Analysis

- ▶ In a DAG, there is always a node v with no incoming edges.
- ▶ Removing a node v from a DAG, produces a new DAG.
- ▶ Any node with no incoming edges can be first in topological ordering.

Theorem G is a DAG if and only if G has a topological ordering.

Graphs Summary

- ▶ Graph Traversal
 - ▶ BFS/DFS, Connected Components, Bipartite Testing
 - ▶ Traversal Implementation and Analysis
- ▶ Directed Graphs
 - ▶ Strong Connectivity
 - ▶ Directed Acyclic Graphs
 - ▶ Topological ordering