Plan

- Review: Asymptotics
 - $O(\cdot), \Omega(\cdot), \Theta(\cdot)$
 - Running time analysis
- Graphs
 - Motivation and definitions
 - Graph traversal
 - Breadth-First-Search (BFS)
 - Depth-First-Search
 - An Application
 - Implementation

Review: Asymptotics

Definition $f(n) = O(g(n))$ if there exists n_0, c such that for all $n \geq n_0$, $f(n) \leq cg(n)$.
- g is an asymptotic upper bound on f.

Definition $f(n) = \Omega(g(n))$ if $g(n) = O(f(n))$.
- g is an asymptotic lower bound on f.

Definition $f(n) = \Theta(g(n))$ if $f(n) = O(g(n))$ and $g(n) = O(f(n))$.
- g is an asymptotically tight bound on f.

Algorithm design

- Formulate the problem precisely
- Design an algorithm to solve the problem
- Prove the algorithm is correct
- Analyze the algorithm’s running time

Running Time Analysis

Mathematical analysis of worst-case running time of an algorithm as function of input size. Why these choices?
- Mathematical: describes the algorithm. Avoids hard-to-control experimental factors (CPU, programming language, quality of implementation), while still being predictive.
- Worst-case: just works. (“average case” appealing, but hard to analyze)
- Function of input size: allows predictions. What will happen on a new input?
Efficiency

When is an algorithm efficient?
Stable Matching Brute force: $\Omega(n!)$
Propose-and-Reject?: $O(n^2)$
We must have done something clever

Polynomial Time

Working definition of efficient

Definition: an algorithm runs in **polynomial time** if the number of primitive execution steps is at most cn^d, where n is the input size and c and d are constants.

- Matches practice: almost all practically efficient algorithms have this property
- Usually distinguishes a clever algorithm from a “brute force” approach ($n^d = O(2^n)$ for all constant d).
- Refutable: gives us a way of saying an algorithm is not efficient, or that no efficient algorithm exists.

Plan

- Review: Asymptotics
 - $O(\cdot), \Omega(\cdot), \Theta(\cdot)$
 - Running time analysis
- Graphs
 - Motivation and definitions
 - Graph traversal
 - Breadth-First-Search (BFS)
 - Depth-First-Search
 - An Application
 - Implementation
- Questions

- Facebook: how many “degrees of separation” between me and Barack Obama?
- Google Maps: what is the shortest driving route from South Hadley to Florida?

 Can we build algorithms to answer these questions?

Networks

- A network visualization showing connections and data points.
Graphs

A graph is a mathematical representation of a network

- Set of nodes (vertices) \(V \)
- Set of pairs of nodes (edges) \(E \)

Graph \(G = (V, E) \)

Example: Internet in 1970

Definitions:

Edge \(e = (u, v) \). Neighbor, incident, endpoints

Definitions:

Path, cycle, path length, distance between two nodes

Definitions:

Connected. Connected components.

Definitions:

Tree = a connected undirected graph that does not contain a cycle
Rooted vs. unrooted trees
Graph Traversal

Thought experiment. World social graph. Is it connected? Is there a path between you and Barack Obama? How can you tell?

Answer: graph traversal! (BFS/DFS)

Breadth-First Search: Layers

Define layer \(L_i = \{ \text{all nodes at distance exactly } i \text{ from } s \} \).

- \(L_0 = \{ s \} \)
- \(L_1 = \{ \text{all neighbors of } L_0 \} \)
- \(L_2 = \{ \text{all nodes with an edge to } L_1 \text{ that don’t belong to } L_0 \text{ or } L_1 \} \)
- \(\ldots \)
- \(L_{i+1} = \{ \text{nodes with an edge to } L_i \text{ that don’t belong to any earlier layer} \} \)

\[
L_{i+1} = \{ v : \exists (u, v) \in E, u \in L_i, v \notin (L_0 \cup \ldots \cup L_i) \}
\]

Observation: There is a path from \(s \) to \(t \) if and only if \(t \) appears in some layer.

BFS

Exercise: draw the BFS layers for a BFS starting from MIT

BFS Tree

We can use BFS to make a tree.

Claim: Let \(T \) be the tree discovered by BFS on graph \(G = (V, E) \), and let \((x, y)\) be any edge of \(G \). Then the layer of \(x \) and \(y \) in \(T \) differ by at most 1.

Proof on board
BFS and Non-tree edges

Claim: let T be the tree discovered by BFS on graph $G = (V, E)$, and let (x, y) be any edge of G. Then the layer of x and y in T differ by at most 1.

Proof

- Suppose $x \in L_i$ and $y \in L_j$ with $i < j - 1$ but edge (x, y) exists.
- When BFS visits x, either y is already discovered or not.
 - If y is already discovered, then $j \leq i$. Contradiction.
 - Otherwise since $(x, y) \in E$, y is added to L_{i+1}. Contradiction.

A More General Strategy

To explore the connected component, add any node v for which
- (u, v) is an edge
- u is explored, but v is not

Picture on board

DFS

Depth-first search: keep exploring from the most recently added node until you have to backtrack.

Example.

![DFS Tree]

DFS Tree

Claim: let T be a depth-first search tree for graph $G = (V, E)$, and let (x, y) be an edge that is in G but not T (a “non-tree edge”). Then either x is an ancestor of y or y is an ancestor of x in T.

proof on board

Recursive DFS

DFS(u)

Mark u as "explored"

for each edge (u, v) incident to u do
 if v is not marked "explored" then
 Recursively invoke DFS(v)
 end if
end for

Example on board

DFS and Non-tree edges

Claim: let T be a depth-first search tree for graph $G = (V, E)$, and let (x, y) be an edge that is in G but not T (a “non-tree edge”). Then either x is an ancestor of y or y is an ancestor of x in T.

Proof

- Suppose not and suppose that x is reached first by DFS.
- Before leaving x, we must examine (x, y).
- Since $(x, y) \notin T$, y must have been explored by this time.
- But y was not explored when we arrived at x by assumption.
- Thus y was explored during the execution of DFS(x).
- Implies x is ancestor of y.
Using Graph Traversal

Definition: the connected component \(C(v) \) of node \(v \) is the set of all nodes with a path to \(v \).

Easy claim: for any two nodes \(s \) and \(t \) either \(C(s) = C(t) \), or \(C(s) \) and \(C(t) \) are disjoint.

Picture/example on board

Finding Connected Components

Traverse entire graph even if not connected.
Extract connected components.

Picture/example on board

while There is some unexplored node \(s \) do
 BFS\((s)\) \(\triangleright \) Run BFS starting from \(s \).
 Extract connected component \(C(s) \).
end while

Running time?
What’s the running time of BFS?

Summary So Far

- Graph – definitions
- Graph traversals – BFS, DFS, and some properties
- Finding connected components
- Next – Implementation and run-time analysis.

Representing a graph

Adjacency List Representation.
- Nodes numbered \(1, \ldots, n \).
- \(\text{Adj}[v] \) points to a list of all of \(v \)'s neighbors.
- Example

Implementing BFS

Maintain set of **explored** nodes and **discovered**

- Explored = have seen this node and explored its outgoing edges
- Discovered = the “frontier”. Have seen the node, but not explored its outgoing edges.

Picture on board

BFS Implementation

Let \(A = \text{Queue of discovered nodes (FIFO)} \)
Traverse\((s)\)
Put \(s \) in \(A \)

while \(A \) is not empty do
 Take a node \(v \) from \(A \)
 if \(v \) is not marked "explored" then
 Mark \(v \) as "explored"
 for each edge \((v,w)\) incident to \(v \) do
 Put \(w \) in \(A \) \(\triangleright w \) is discovered
 end for
 end if
end while

Note: one part of this algorithm seems really dumb. Why?
Can put multiple copies of a node in \(A \). ("Rediscover it many times"
BFS Implementation

Let A = Queue of discovered nodes (FIFO)
Traverse(s)

Put s in A
while A is not empty do
 Take a node v from A
 if v is not marked “explored” then
 Mark v as “explored”
 for each edge (v, w) incident to v do
 Put w in A \(\triangleright \) w is discovered
 end for
 end if
end while

Is this BFS?

Summary

Definitions
- $G = (V, E)$, $n = |V|$, $m = |E|$
- neighbor, incident, cycle, path, connected

BFS and DFS
- Two ways to traverse a graph, each produces a tree
- BFS tree: shallow and wide (“bushy”)
- DFS tree: deep and narrow (“scraggly”)
- Connected Components