CMPSCI 311: Introduction to Algorithms Practice Final Exam

Name:	ID:	
Instructions:		

- Answer the questions directly on the exam pages.
- Show all your work for each question. Providing more detail including comments and explanations can help with assignment of partial credit.
- If the answer to a question is a number, unless the problem says otherwise, you may give your answer using arithmetic operations, such as addition, multiplication, "choose" notation and factorials (e.g., " $9 \times 35! + 2$ " or " $0.5 \times 0.3/(0.2 \times 0.5 + 0.9 \times 0.1)$ " is fine).
- If you need extra space, use the back of a page.
- No books, notes, calculators or other electronic devices are allowed. Any cheating will result in a grade of 0.
- If you have questions during the exam, raise your hand.

Question	Value	Points Earned
1	10	
2	20	
3	30	
4	10	
5	20	
6	10	
Total	100	

Question 1. (10 points) True of False? Indicate whether each of the following statements is TRUE or FALSE. No justification required.

1.1 (2 points): 3-COLORING can be solved by breadth first search and therefore is in P.

1.2 (2 points): $\sum_{i=1}^{n} 2^{i} = \Theta(2^{n}).$

1.3 (2 points): A dynamic program that implements the following recursive form can be used to solve the subset sum problem, which asks to find a subset S of numbers from x_1, \ldots, x_n (all non-negative) with maximum weight subject to not exceeding a given number W.

$$Val(i, w) = \max\{Val(i - 1, w), x_i + Val(i - 1, w - x_i)\}$$

1.4 (2 points): For any flow network, and any two vertices s, t there is always a flow of at least 1 from source s to target t.

1.5 (2 points): The recurrence T(n) = 2T(n-1) + O(1) solves to $\Theta(n^2)$.

Question 2. (20 points) Short Answer. Answer each of the following questions in at most two sentences.

 $\textbf{2.1} \ (\textit{4 points}) : \quad \textit{In a weighted graph G where all edges have weight 1, how can we use $Djikstra's$ algorithm to find a minimum spanning tree?}$

2.2 (4 points): Solve the recurrence T(n) = 3T(n/2) + O(n).

2.3 (4 points): Suppose a dynamic programming algorithm creates an $n \times m$ table and to compute each entry of the table it takes a minimum over at most m (previously computed) other entries. What would the running time of this algorithm be, assuming there is no other computations.

2.4 (4 points): Why is MAXFLOW in $\mathcal{NP} \cap co\text{-}\mathcal{NP}$?

2.5 (4 points): Suppose A is a randomized algorithm that finds the optimal solution to some minimization problem with probability at least $p \in (0,1)$. More precisely, if we run A o some input, it returns a candidate solution O along with the cost of O, and with probability at least p, we are guaranteed that O minimizes the cost function. For another parameter $\delta > 0$, how can we use A to find an optimal solution with probability at least $1 - \delta$ and what is the running time of this new algorithm?

Question	3. (20	points)	Consider t	he longest	increasing	subsequence	problem	defined as
follows. Given	a list of	numbers ϵ	a_1,\ldots,a_n ϵ	an increasir	ng subsequ	ence is a list of	of indices i	$i_1,\ldots,i_k\in$
$\{1,\ldots,n\}$ such	h that i_1	$< i_2 < \dots$	$,i_k \text{ and } a_{i_1}$	$\leq a_{i_2} \leq \dots$	$\ldots, \leq a_{i_k}$. T	The longest in	creasing su	ıbsequence
is the longest	list of inc	lices with	this prope	rty.				

3.1 (2 points): What is the longest increasing subsequence of the list 5, 3, 4, 8, 7, 10?

3.2 (4 points): Consider the greedy algorithm that chooses the first element of the list, and then repeatedly chooses the next element that is larger. Is this a correct algorithm? Either prove its correctness or provide a counter example.

3.3 (4 points): Consider the greedy algorithm that chooses the smallest element of the list, and then repeatedly chooses the smallest element that comes after this chosen one. Is this a correct algorithm? Either prove its correctness or provide a counterexample.

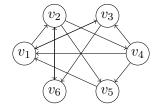
3.4 (5 points): Consider a divide and conquer strategy that splits the list into the first half and second half, recursively computes $L = (\ell_1, \ldots, \ell_{k_L}), R = (r_1, \ldots, r_{k_R})$ the longest increasing subsequences in each half, and then, if the last chosen element in the first half is less than the first chosen index in the second half (i.e. $a_{\ell_{k_L}} \leq a_{r_1}$) returns $L \cdot R$, otherwise it returns the longer of L and R. Is this a correct algorithm? either prove its correctness of provide a counterexample.

3.5 (15 points): Design a dynamic programming algorithm for longest increasing subsequence. Prove its correctness and analyze its running time.

Question 4. (10 points) In this problem we investigate the feedback arc-set problem which generalizes the topological ordering. Given a directed graph (which may contain cycles), the goal in feedback arc-set is to find an ordering of the vertices that minimizes the number of back edges. More precisely, if G = (V, E) is a directed graph, and $(a_1, \ldots, a_n) \in V$ with $a_i \neq a_j$ is an ordering of the vertices, we define the cost as

$$cost(a_1, \dots, a_n) = \sum_{i < j} \mathbf{1}[(a_j, a_i) \in E]$$

Here $\mathbf{1}[\cdot]$ is a function that is 1 if the argument is true and zero otherwise. This is the number of edges going from right to left (backward) if we ordered the vertices with a_1 on the left and a_n on the right.



- **4.1** (1 points): In the above graph, what is the cost of $(v_1, v_2, v_3, v_4, v_5, v_6)$?
- **4.2** (1 points): In the above graph, what is the cost of $(v_6, v_5, v_4, v_3, v_2, v_1)$?
- **4.3** (2 points): True or False. a directed acyclic graph always has an ordering O with cost(O) = 0.
- **4.4** (6 points): Prove that the decision version of feedback arc set is NP-complete. That is given a directed graph and an integer k, decide whether the graph has an ordering with at most k back-edges.

Question 5. (20 points) In this problem we investigate vertex-capacitated flow networks. We are given a directed graph G = (V, E) with source s and sink t and a capacity c_v for each $v \in V$. We want an s-t flow f that satisfies the usual conservation of flow constraints, but instead of satisfying edge-capacity constraints, satisfies the vertex capacity constraints $f(v) \leq c_v$. Here $f(v) = \sum_{(u,v)\in E} f_{u,v}$ is the total flow entering the node v. The goal is to design an algorithm for computing a maximum s-t flow in a vertex-capacitated network.

5.1 (5 points): Draw a directed graph G with clearly labeled source s and sink t, where if we consider the usual edge-capacitated version of the problem (with edge capacities $c_e = 1$) we get a maximum flow with a different value than if we consider the vertex capacitated version of the problem (with vertex capacities $c_v = 1$).

5.2 (15 points): Design a polynomial time algorithm for computing the maximum flow in a node-capacitated network. Prove that the algorithm is correct and analyze its running time.

 $Additional\ space.$

Question 6. (10 points) Consider a variant of the subset sum problem where we are given a set of numbers x_1, \ldots, x_n and need to partition them numbers into sets S_1, \ldots, S_K such that for each $k \in \{1, \ldots, K\}$, $\sum_{i \in S_k} x_i \leq W$ for some target W. The goal is to minimize K, the number of sets in the partition. We will study a simple approximation algorithm for this problem. The algorithm considers the items in order, and forms the first set S_1 by repeatedly adding the numbers x_1, x_2, \ldots until the next number would exceed the target W. Then it proceed to construct the next set.

6.1 (2 points): Give an example input where this algorithm does not use the minimum number of sets.

6.2 (2 points): Derive a lower bound on K^* the smallest possible number of sets in the partition in terms of the target W and the total weight $X = \sum_{i=1}^{n} x_i$.

6.3 (6 points): Use this lower bound to prove that this greedy algorithm always produces a number of sets K that is at most $2K^*$.