Outline

1. Game Theory

2. Non Zero-Sum Games and Nash Equilibrium
Example: Two-finger Morra

- Alice and Bob play a game
Example: Two-finger Morra

- Alice and Bob play a game
- Simultaneously Alice picks $a \in \{1, 2\}$ and Bob picks $b \in \{1, 2\}$
Example: Two-finger Morra

- Alice and Bob play a game
- Simultaneously Alice picks \(a \in \{1, 2\} \) and Bob picks \(b \in \{1, 2\} \)
- Bob pays Alice \((a + b)\) if \(a + b \) is even
Example: Two-finger Morra

- Alice and Bob play a game
- Simultaneously Alice picks $a \in \{1, 2\}$ and Bob picks $b \in \{1, 2\}$
- Bob pays Alice $(a + b)$ if $a + b$ is even
- Alice pays Bob $(a + b)$ if $a + b$ is odd
Example: Two-finger Morra

- Alice and Bob play a game
- Simultaneously Alice picks $a \in \{1, 2\}$ and Bob picks $b \in \{1, 2\}$
- Bob pays Alice $(a + b)$ if $a + b$ is even
- Alice pays Bob $(a + b)$ if $a + b$ is odd

Obviously if Bob always plays the same number, Alice can take advantage of this. What if Bob plays different numbers with different probabilities?
Suppose Bob plays “1” with prob. q and “2” with prob. $1 - q$
Analysis of Two-finger Morra (1/2)

- Suppose Bob plays “1” with prob. q and “2” with prob. $1 - q$
- If Alice plays “1” then Alice has expected return

$$2q - 3(1 - q) = 5q - 3$$
Analysis of Two-finger Morra (1/2)

- Suppose Bob plays “1” with prob. q and “2” with prob. $1 - q$
- If Alice plays “1” then Alice has expected return
 \[2q - 3(1 - q) = 5q - 3\]
- If Alice plays “2” then Alice has expected return
 \[-3q + 4(1 - q) = 4 - 7q\]
Analysis of Two-finger Morra (1/2)

- Suppose Bob plays “1” with prob. q and “2” with prob. $1 - q$
- If Alice plays “1” then Alice has expected return
 \[
 2q - 3(1 - q) = 5q - 3
 \]
- If Alice plays “2” then Alice has expected return
 \[
 -3q + 4(1 - q) = 4 - 7q
 \]
- If Alice plays her best option, she expects to get
 \[
 \max(5q - 3, 4 - 7q)
 \]
Analysis of Two-finger Morra (1/2)

- Suppose Bob plays “1” with prob. q and “2” with prob. $1 - q$
- If Alice plays “1” then Alice has expected return

 $$2q - 3(1 - q) = 5q - 3$$

- If Alice plays “2” then Alice has expected return

 $$-3q + 4(1 - q) = 4 - 7q$$

- If Alice plays her best option, she expects to get

 $$\max(5q - 3, 4 - 7q)$$

- Hence, if Bob sets $q = 7/12$ he still expects to win at least 1/12
Analysis of Two-finger Morra (2/2)

- Suppose Alice plays “1” with prob. p and “2” with prob. $1 - p$

- If Bob plays “1” then Bob expects to get $-2p + 3(1 - p) = 3 - 5p$

- If Bob plays “2” then Bob expects to get $3p - 4(1 - p) = 7p - 4$

- If Bob plays his best option, he expects to get $\max(3 - 5p, 7p - 4)$

- Hence, if Alice sets $p = \frac{7}{12}$ she still expects to lose at most $\frac{1}{12}$

Conclusion:

Hence, best strategy for both players is play 1 finger with probability $\frac{7}{12}$ and 2 fingers with probability $\frac{5}{12}$.
Analysis of Two-finger Morra (2/2)

- Suppose Alice plays “1” with prob. p and “2” with prob. $1 - p$
- If Bob plays “1” then Bob expects to get

$$-2p + 3(1 - p) = 3 - 5p$$

Hence, if Alice sets $p = 7/12$ she still expects to loose at most $1/12$

Conclusion:
Best strategy for both players is play 1 finger with probability $7/12$ and 2 fingers with probability $5/12$.
Analysis of Two-finger Morra (2/2)

- Suppose Alice plays “1” with prob. \(p \) and “2” with prob. \(1 - p \)
- If Bob plays “1” then Bob expects to get

\[-2p + 3(1 - p) = 3 - 5p\]

- If Bob plays “2” then Bob expects to get

\[3p - 4(1 - p) = 7p - 4\]

Hence, if Alice sets \(p = \frac{7}{12} \) she still expects to lose at most \(\frac{1}{12} \)

Conclusion:
Hence, best strategy for both players is play 1 finger with probability \(\frac{7}{12} \) and 2 fingers with probability \(\frac{5}{12} \)
Analysis of Two-finger Morra (2/2)

- Suppose Alice plays “1” with prob. p and “2” with prob. $1 - p$
- If Bob plays “1” then Bob expects to get
 \[-2p + 3(1 - p) = 3 - 5p\]
- If Bob plays “2” then Bob expects to get
 \[3p - 4(1 - p) = 7p - 4\]
- If Bob plays his best option, he expects to get
 \[\max(3 - 5p, 7p - 4)\]
Analysis of Two-finger Morra (2/2)

- Suppose Alice plays “1” with prob. p and “2” with prob. $1 - p$
- If Bob plays “1” then Bob expects to get

 $$-2p + 3(1 - p) = 3 - 5p$$

- If Bob plays “2” then Bob expects to get

 $$3p - 4(1 - p) = 7p - 4$$

- If Bob plays his best option, he expects to get

 $$\max(3 - 5p, 7p - 4)$$

- Hence, if Alice sets $p = 7/12$ she still expects to loose at most $1/12$
Suppose Alice plays “1” with prob. p and “2” with prob. $1 - p$

If Bob plays “1” then Bob expects to get

$$-2p + 3(1 - p) = 3 - 5p$$

If Bob plays “2” then Bob expects to get

$$3p - 4(1 - p) = 7p - 4$$

If Bob plays his best option, he expects to get

$$\max(3 - 5p, 7p - 4)$$

Hence, if Alice sets $p = 7/12$ she still expects to lose at most 1/12

Conclusion: Hence, best strategy for both players is play 1 finger with probability 7/12 and 2 fingers with probability 5/12.
Zero-Sum Games

Definition

A *two-player, simultaneous-move, zero-sum game* consists of a set of k options for player A, a set of options ℓ for player B, and a $k \times \ell$ payoff *matrix* P. If A is chooses option i and B chooses option j then A gets P_{ij} and B gets $-P_{ij}$.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>+2</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>+3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-3</td>
</tr>
</tbody>
</table>
Zero-Sum Games

Definition

A *two-player, simultaneous-move, zero-sum game* consists of a set of k options for player A, a set of options ℓ for player B, and a $k \times \ell$ payoff matrix P. If A chooses option i and B chooses option j then A gets P_{ij} and B gets $-P_{ij}$.

For two-finger Morra, the payoff matrix is

<table>
<thead>
<tr>
<th></th>
<th>1 B Finger</th>
<th>2 B Finger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A Finger</td>
<td>+2</td>
<td>−3</td>
</tr>
<tr>
<td>2 A Finger</td>
<td>−3</td>
<td>+4</td>
</tr>
</tbody>
</table>
Zero-Sum Games

Definition

A two-player, simultaneous-move, zero-sum game consists of a set of k options for player A, a set of options ℓ for player B, and a $k \times \ell$ payoff matrix P. If A chooses option i and B chooses option j then A gets P_{ij} and B gets $-P_{ij}$.

For two-finger Morra, the payoff matrix is

<table>
<thead>
<tr>
<th></th>
<th>1 B Finger</th>
<th>2 B Finger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A Finger</td>
<td>+2</td>
<td>−3</td>
</tr>
<tr>
<td>2 A Finger</td>
<td>−3</td>
<td>+4</td>
</tr>
</tbody>
</table>

Definition

If a player picks one of their options, we call it a pure strategy. If they pick a distribution over their options, we call it a mixed strategy. If one option is better than other no matter what the other player does, we say the first strategy dominates the second.
Example: Three-finger Morra

- Alice and Bob play a game
Example: Three-finger Morra

- Alice and Bob play a game
- Simultaneously Alice picks $a \in \{1, 2, 3\}$ and Bob picks $b \in \{1, 2, 3\}$
Example: Three-finger Morra

- Alice and Bob play a game
- Simultaneously Alice picks $a \in \{1, 2, 3\}$ and Bob picks $b \in \{1, 2, 3\}$
- Bob pays Alice $(a + b)$ if $a + b$ is even
Example: Three-finger Morra

- Alice and Bob play a game
- Simultaneously Alice picks $a \in \{1, 2, 3\}$ and Bob picks $b \in \{1, 2, 3\}$
- Bob pays Alice $(a + b)$ if $a + b$ is even
- Alice pays Bob $(a + b)$ if $a + b$ is odd
Example: Three-finger Morra

- Alice and Bob play a game
- Simultaneously Alice picks $a \in \{1, 2, 3\}$ and Bob picks $b \in \{1, 2, 3\}$
- Bob pays Alice $(a + b)$ if $a + b$ is even
- Alice pays Bob $(a + b)$ if $a + b$ is odd
- The payoff matrix is

<table>
<thead>
<tr>
<th></th>
<th>1 B Finger</th>
<th>2 B Finger</th>
<th>3 B Finger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A Finger</td>
<td>+2</td>
<td>−3</td>
<td>+4</td>
</tr>
<tr>
<td>2 A Finger</td>
<td>−3</td>
<td>+4</td>
<td>−5</td>
</tr>
<tr>
<td>3 A Finger</td>
<td>+4</td>
<td>−5</td>
<td>+6</td>
</tr>
</tbody>
</table>
Suppose A plays “1” with probability r, “2” with probability s, and “3” with probability $1 - r - s$.
Suppose A plays “1” with probability r, “2” with probability s, and “3” with probability $1 - r - s$

If B plays “1” then A’s expected reward is

\[2r - 3s + 4(1 - r - s) = 4 - 2r - 7s\]
Suppose A plays “1” with probability r, “2” with probability s, and “3” with probability $1 - r - s$

If B plays “1” then A’s expected reward is

$$2r - 3s + 4(1 - r - s) = 4 - 2r - 7s$$

If B plays “2” then A’s expected reward is

$$-3r + 4s - 5(1 - r - s) = -5 + 2r + 9s$$
Suppose A plays “1” with probability r, “2” with probability s, and “3” with probability $1 - r - s$.

If B plays “1” then A’s expected reward is

$$2r - 3s + 4(1 - r - s) = 4 - 2r - 7s$$

If B plays “2” then A’s expected reward is

$$-3r + 4s - 5(1 - r - s) = -5 + 2r + 9s$$

If B plays “3” then A’s expected reward is

$$4r - 5s + 6(1 - r - s) = 6 - 2r - 11s$$
Analysis of Three-finger Morra (1/2)

- Suppose A plays “1” with probability r, “2” with probability s, and “3” with probability $1 - r - s$
- If B plays “1” then A’s expected reward is
 $$2r - 3s + 4(1 - r - s) = 4 - 2r - 7s$$
- If B plays “2” then A’s expected reward is
 $$-3r + 4s - 5(1 - r - s) = -5 + 2r + 9s$$
- If B plays “3” then A’s expected reward is
 $$4r - 5s + 6(1 - r - s) = 6 - 2r - 11s$$
- Hence, for $r = 1/4$, $s = 1/2$, A gets expected return at least 0
Suppose B plays “1” with probability r, “2” with probability s, and “3” with probability $1 - r - s$
Analysis of Three-finger Morra (2/2)

- Suppose B plays “1” with probability r, “2” with probability s, and “3” with probability $1 - r - s$
- If A plays “1” then B’s expected reward is
 \[-2r + 3s - 4(1 - r - s) = -4 + 2r + 7s \]

Hence, for $r = 1/4$, $s = 1/2$, B gets expected return at least 0

Hence, best strategy for each player is show 1 finger with probability $1/4$ and 2 fingers with probability $1/2$.
Suppose B plays “1” with probability r, “2” with probability s, and “3” with probability $1 - r - s$

If A plays “1” then B’s expected reward is

$$-2r + 3s - 4(1 - r - s) = -4 + 2r + 7s$$

If A plays “2” then B’s expected reward is

$$3r - 4s + 5(1 - r - s) = 5 - 2r - 9s$$
Suppose B plays “1” with probability r, “2” with probability s, and “3” with probability $1 - r - s$.

If A plays “1” then B’s expected reward is

$$-2r + 3s - 4(1 - r - s) = -4 + 2r + 7s$$

If A plays “2” then B’s expected reward is

$$3r - 4s + 5(1 - r - s) = 5 - 2r - 9s$$

If A plays “3” then B’s expected reward is

$$-4r + 5s - 6(1 - r - s) = -6 + 2r + 11s$$

Hence, for $r = 1/4$, $s = 1/2$, B gets expected return at least 0.

Hence, best strategy for each player is show 1 finger with probability $1/4$ and 2 fingers with probability $1/2$.

Analysis of Three-finger Morra (2/2)
Suppose B plays “1” with probability r, “2” with probability s, and “3” with probability $1 - r - s$

If A plays “1” then B’s expected reward is

$$-2r + 3s - 4(1 - r - s) = -4 + 2r + 7s$$

If A plays “2” then B’s expected reward is

$$3r - 4s + 5(1 - r - s) = 5 - 2r - 9s$$

If A plays “3” then B’s expected reward is

$$-4r + 5s - 6(1 - r - s) = -6 + 2r + 11s$$

Hence, for $r = 1/4$, $s = 1/2$, B gets expected return at least 0
Suppose B plays “1” with probability r, “2” with probability s, and “3” with probability $1 - r - s$

If A plays “1” then B’s expected reward is

$$-2r + 3s - 4(1 - r - s) = -4 + 2r + 7s$$

If A plays “2” then B’s expected reward is

$$3r - 4s + 5(1 - r - s) = 5 - 2r - 9s$$

If A plays “3” then B’s expected reward is

$$-4r + 5s - 6(1 - r - s) = -6 + 2r + 11s$$

Hence, for $r = 1/4$, $s = 1/2$, B gets expected return at least 0

Hence, best strategy for each player is show 1 finger with probability $1/4$ and 2 fingers with probability $1/2$.
Outline

1. Game Theory

2. Non Zero-Sum Games and Nash Equilibrium
Prisoner’s Dilemma

Two prisoners are being held pending trial for a crime they are alleged to have committed. The prosecutor offers each a deal:

“Give evidence against your partner and you'll go free, unless your partner also confesses. If both confess, both get 5 year sentences. If neither confess, both get 1 year sentences. If you don’t confess but your partner does, you get 10 years!”
Two prisoners are being held pending trial for a crime they are alleged to have committed. The prosecutor offers each a deal:

“Give evidence against your partner and you’ll go free, unless your partner also confesses. If both confess, both get 5 year sentences. If neither confess, both get 1 year sentences. If you don’t confess but your partner does, you get 10 years!”

Can represent this as a game but it’s not zero-sum:

<table>
<thead>
<tr>
<th></th>
<th>B Confesses</th>
<th>B Stays Mute</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Confesses</td>
<td>−5, −5</td>
<td>0, −10</td>
</tr>
<tr>
<td>A Stays Mute</td>
<td>−10, 0</td>
<td>−1, −1</td>
</tr>
</tbody>
</table>

In each entry, the first number is A’s reward and the second number of B’s reward.
Nash Equilibrium

Definition

A Nash Equilibrium is a set of strategies for each player where no change by one player alone can improve his outcome.
Nash Equilibrium

Definition

A Nash Equilibrium is a set of strategies for each player where no change by one player alone can improve his outcome.

For the prisoners dilemma the unique Nash Equilibrium is that both prisoners confess.
Nash Equilibrium

Definition

A Nash Equilibrium is a set of strategies for each player where no change by one player alone can improve his outcome.

For the prisoners dilemma the unique Nash Equilibrium is that both prisoners confess.

Theorem (Nash)

Every game where each player has a finite number of options, has at least one Nash equilibrium.
Hawks and Doves

- Two birds meet over a piece of food and have to decide whether to act aggressive (hawkish) or passive (dovish).

<table>
<thead>
<tr>
<th>B is a Hawk</th>
<th>B is a Dove</th>
</tr>
</thead>
<tbody>
<tr>
<td>A is a Hawk</td>
<td>−25, −25</td>
</tr>
<tr>
<td>A is a Dove</td>
<td>0, 50</td>
</tr>
</tbody>
</table>

No Nash Equilibrium where both players play same pure strategies:
- If A and B are Hawks, both would prefer to switch to Doves.
- If A and B are Doves, both would prefer to switch to Hawks.
- A plays Hawk and B plays Dove is a Nash Equilibria and vice versa.
Hawks and Doves

- Two birds meet over a piece of food and have to decide whether to act aggressive (hawkish) or passive (dovish)
 - If a hawk meets a dove, the hawk gets the food worth 50 points

If A and B are Hawks, both would prefer to switch to Doves
If A and B are Doves, both would prefer to switch to Hawks
A plays Hawk and B plays Dove is a Nash Equilibria and vice versa
Hawks and Doves

- Two birds meet over a piece of food and have to decide whether to act aggressive (hawkish) or passive (dovish)
 - If a hawk meets a dove, the hawk gets the food worth 50 points
 - If two hawks meet they both loose -25 points
Hawks and Doves

- Two birds meet over a piece of food and have to decide whether to act aggressive (hawkish) or passive (dovish)
 - If a hawk meets a dove, the hawk gets the food worth 50 points
 - If two hawks meet they both loose -25 points
 - If two doves meet, they both get 15 points
Hawks and Doves

- Two birds meet over a piece of food and have to decide whether to act aggressive (hawkish) or passive (dovish)
 - If a hawk meets a dove, the hawk gets the food worth 50 points
 - If two hawks meet they both lose -25 points
 - If two doves meet, they both get 15 points

- Can represent this as:

<table>
<thead>
<tr>
<th></th>
<th>B is a Hawk</th>
<th>B is a Dove</th>
</tr>
</thead>
<tbody>
<tr>
<td>A is a Hawk</td>
<td>-25, -25</td>
<td>50, 0</td>
</tr>
<tr>
<td>A is a Dove</td>
<td>0, 50</td>
<td>15, 15</td>
</tr>
</tbody>
</table>
Hawks and Doves

- Two birds meet over a piece of food and have to decide whether to act aggressive (hawkish) or passive (dovish)
 - If a hawk meets a dove, the hawk gets the food worth 50 points
 - If two hawks meet they both loose -25 points
 - If two doves meet, they both get 15 points

- Can represent this as:

<table>
<thead>
<tr>
<th></th>
<th>B is a Hawk</th>
<th>B is a Dove</th>
</tr>
</thead>
<tbody>
<tr>
<td>A is a Hawk</td>
<td>−25, −25</td>
<td>50, 0</td>
</tr>
<tr>
<td>A is a Dove</td>
<td>0, 50</td>
<td>15, 15</td>
</tr>
</tbody>
</table>

- No Nash Equilibrium where both players play same pure strategies:
Hawks and Doves

- Two birds meet over a piece of food and have to decide whether to act aggressive (hawkish) or passive (dovish)
 - If a hawk meets a dove, the hawk gets the food worth 50 points
 - If two hawks meet they both lose -25 points
 - If two doves meet, they both get 15 points

- Can represent this as:

<table>
<thead>
<tr>
<th></th>
<th>B is a Hawk</th>
<th>B is a Dove</th>
</tr>
</thead>
<tbody>
<tr>
<td>A is a Hawk</td>
<td>−25, −25</td>
<td>50, 0</td>
</tr>
<tr>
<td>A is a Dove</td>
<td>0, 50</td>
<td>15, 15</td>
</tr>
</tbody>
</table>

- No Nash Equilibrium where both players play same pure strategies:
 - If A and B are Hawks, both would prefer to switch to Doves
Hawks and Doves

- Two birds meet over a piece of food and have to decide whether to act aggressive (hawkish) or passive (dovish)
 - If a hawk meets a dove, the hawk gets the food worth 50 points
 - If two hawks meet they both loose -25 points
 - If two doves meet, they both get 15 points

- Can represent this as:

<table>
<thead>
<tr>
<th></th>
<th>B is a Hawk</th>
<th>B is a Dove</th>
</tr>
</thead>
<tbody>
<tr>
<td>A is a Hawk</td>
<td>-25, -25</td>
<td>50, 0</td>
</tr>
<tr>
<td>A is a Dove</td>
<td>0, 50</td>
<td>15, 15</td>
</tr>
</tbody>
</table>

- No Nash Equilibrium where both players play same pure strategies:
 - If A and B are Hawks, both would prefer to switch to Doves
 - If A and B are Doves, both would prefer to switch to Hawks
Hawks and Doves

- Two birds meet over a piece of food and have to decide whether to act aggressive (hawkish) or passive (dovish)
 - If a hawk meets a dove, the hawk gets the food worth 50 points
 - If two hawks meet they both lose -25 points
 - If two doves meet, they both get 15 points
- Can represent this as:

<table>
<thead>
<tr>
<th></th>
<th>B is a Hawk</th>
<th>B is a Dove</th>
</tr>
</thead>
<tbody>
<tr>
<td>A is a Hawk</td>
<td>-25, -25</td>
<td>50, 0</td>
</tr>
<tr>
<td>A is a Dove</td>
<td>0, 50</td>
<td>15, 15</td>
</tr>
</tbody>
</table>

- No Nash Equilibrium where both players play same pure strategies:
 - If A and B are Hawks, both would prefer to switch to Doves
 - If A and B are Doves, both would prefer to switch to Hawks
 - A plays Hawk and B plays Dove is a Nash Equilibrium and vice versa
A Mixed Strategy Nash Equilibrium for Hawks and Doves

Suppose Alice plays Hawk with probability $0 < q < 1$ and Bob plays Hawk with probability $0 < p < 1$. Alice's expected reward is

$$-25pq + 50q(1-p) + 15(1-p)(1-q)$$

When can Alice not improve by changing q?

When $p = \frac{7}{12}$.

Bob's expected reward is

$$-60pq + 35p + 15 - 15q$$

When can Bob not improve by changing p?

When $q = \frac{7}{12}$.

Hence $p = q = \frac{7}{12}$ is only Nash Equilibrium with mixed strategies.
Suppose Alice plays Hawk with probability $0 < q < 1$ and Bob plays Hawk with probability $0 < p < 1$. Alice's expected reward is:

$$-25pq + 50q(1-p) + 15(1-p)(1-q)$$

When can Alice not improve by changing q?

When $p = \frac{7}{12}$.

Bob's expected reward is:

$$-60pq + 35p + 15 - 15q$$

When can Bob not improve by changing p?

When $q = \frac{7}{12}$.

Hence $p = q = \frac{7}{12}$ is only Nash Equilibrium with mixed strategies.
A Mixed Strategy Nash Equilibrium for Hawks and Doves

- Suppose Alice plays Hawk with probability $0 < q < 1$ and Bob plays Hawk with probability $0 < p < 1$
- Alice’s expected reward is

$$-25pq + 50q(1 - p) + 15(1 - p)(1 - q)$$

When can Alice not improve by changing q?
When $p = \frac{7}{12}$.

Bob’s expected reward is

$$-60pq + 35p + 15 - 15q = p(35 - 60q) + 15 - 15q$$

When can Bob not improve by changing p?
When $q = \frac{7}{12}$.

Hence $p = q = \frac{7}{12}$ is only Nash Equilibrium with mixed strategies.
A Mixed Strategy Nash Equilibrium for Hawks and Doves

- Suppose Alice play Hawk with probability $0 < q < 1$ and Bob plays Hawk with probability $0 < p < 1$
- Alice’s expected reward is

$$-25pq + 50q(1 - p) + 15(1 - p)(1 - q) = -60pq + 35q + 15 - 15p$$

When can Alice not improve by changing q?
When $p = \frac{7}{12}$.

Bob’s expected reward is

$$-25pq + 35p + 15 - 15q = p(35 - 60q) + 15 - 15q$$

When can Bob not improve by changing p?
When $q = \frac{7}{12}$.

Hence $p = q = \frac{7}{12}$ is only Nash Equilibrium with mixed strategies.
A Mixed Strategy Nash Equilibrium for Hawks and Doves

- Suppose Alice play Hawk with probability $0 < q < 1$ and Bob plays Hawk with probability $0 < p < 1$
- Alice's expected reward is
 \[
 -25pq + 50q(1 - p) + 15(1 - p)(1 - q) = -60pq + 35q + 15 - 15p
 = q(35 - 60p) + 15 - 15p
 \]

When can Alice not improve by changing q?
When $p = \frac{7}{12}$.

When can Bob not improve by changing p?
When $q = \frac{7}{12}$.

Hence $p = q = \frac{7}{12}$ is only Nash Equilibrium with mixed strategies.
A Mixed Strategy Nash Equilibrium for Hawks and Doves

- Suppose Alice plays Hawk with probability $0 < q < 1$ and Bob plays Hawk with probability $0 < p < 1$
- Alice’s expected reward is

\[
-25pq + 50q(1 - p) + 15(1 - p)(1 - q) = -60pq + 35q + 15 - 15p \\
= q(35 - 60p) + 15 - 15p
\]

- When can Alice not improve by changing q?
A Mixed Strategy Nash Equilibrium for Hawks and Doves

- Suppose Alice play Hawk with probability $0 < q < 1$ and Bob plays Hawk with probability $0 < p < 1$
- Alice’s expected reward is

 $$-25pq + 50q(1 - p) + 15(1 - p)(1 - q) = -60pq + 35q + 15 - 15p$$

 $$= q(35 - 60p) + 15 - 15p$$

- When can Alice not improve by changing q? When $p = 7/12$.
A Mixed Strategy Nash Equilibrium for Hawks and Doves

- Suppose Alice play Hawk with probability $0 < q < 1$ and Bob plays Hawk with probability $0 < p < 1$.
- Alice’s expected reward is:
 \[-25pq + 50q(1 - p) + 15(1 - p)(1 - q) = -60pq + 35q + 15 - 15p\]
 \[= q(35 - 60p) + 15 - 15p\]

- When can Alice not improve by changing q? When $p = 7/12$.
- Bob’s expected reward is:
 \[-60pq + 35p + 15 - 15q = p(35 - 60q) + 15 - 15q\]
A Mixed Strategy Nash Equilibrium for Hawks and Doves

- Suppose Alice play Hawk with probability $0 < q < 1$ and Bob plays Hawk with probability $0 < p < 1$

- Alice’s expected reward is

$$-25pq + 50q(1 - p) + 15(1 - p)(1 - q) = -60pq + 35q + 15 - 15p$$

$$= q(35 - 60p) + 15 - 15p$$

- When can Alice not improve by changing q? When $p = 7/12$.

- Bob’s expected reward is

$$-60pq + 35p + 15 - 15q = p(35 - 60q) + 15 - 15q$$

- When can Bob not improve by changing p?
A Mixed Strategy Nash Equilibrium for Hawks and Doves

- Suppose Alice play Hawk with probability $0 < q < 1$ and Bob plays Hawk with probability $0 < p < 1$.
- Alice’s expected reward is

 $$-25pq + 50q(1-p) + 15(1-p)(1-q) = -60pq + 35q + 15 - 15p$$
 $$= q(35 - 60p) + 15 - 15p$$

- When can Alice not improve by changing q? When $p = 7/12$.
- Bob’s expected reward is

 $$-60pq + 35p + 15 - 15q = p(35 - 60q) + 15 - 15q$$

- When can Bob not improve by changing p? When $q = 7/12$.
A Mixed Strategy Nash Equilibrium for Hawks and Doves

- Suppose Alice play Hawk with probability $0 < q < 1$ and Bob plays Hawk with probability $0 < p < 1$
- Alice’s expected reward is

$$-25pq + 50q(1 - p) + 15(1 - p)(1 - q) = -60pq + 35q + 15 - 15p$$

$$= q(35 - 60p) + 15 - 15p$$

- When can Alice not improve by changing q? When $p = 7/12$.
- Bob’s expected reward is

$$-60pq + 35p + 15 - 15q = p(35 - 60q) + 15 - 15q$$

- When can Bob not improve by changing p? When $q = 7/12$.
- Hence $p = q = 7/12$ is only Nash Equilibrium with mixed strategies.