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Balls and Bins: Recap

Throw m balls into n bins where each throw is independent.

How large must m be such that it is likely there exists a bin with at
least two balls? (Birthday Paradox)

P(all bins have at most one ball) =
n

n
×n − 1

n
×n − 2

n
×. . .×n −m + 1

n

e.g., for n = 365 and m ≥ 23 there is a greater than 1/2 chance
that there exists a bin with two or more balls.

How large must m be such that it is likely that all bins get at least
one ball? (Coupon Collecting)

P(there exists an empty bin) ≤ ne−m/n

e.g., for m = 2n ln n this probability is at most 1/n.

If m = n, how full is the fullest bin? (Load Balancing) With
probability at least 1− 1/n, all bins have less than 2 log n balls.
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Estimating Frequencies without Counting

Problem

You observe a long stream m of integers,

3, 5, 2, 9, 10, 101, 17, . . . ,

Because the stream is long and there are many integers, you can’t
remember all the values. At the end of the stream, there’s a quiz with a
single question:

How many times did the value “x” appear?

How well can you estimate the number of occurrences of x? The catch is
that you don’t know x in advance.

Denote the number of occurrences, or frequency, of x by fx .



Count-Min Sketch Randomized Algorithms Bonus: Some Data Stream Puzzles

Count-Min Sketch

Extension of Balls and Bins: For every element in the stream, we
throw a ball into one of n bins but we insist that all balls
corresponding to the same value land in the same bin, i.e.,

for each element j in the stream, a ball lands in bin h(j)

where h(1), h(2), . . . are random values in {1, 2, . . . , n}
The algorithm maintains a counter for each bin:

cj = number of balls in jth bin =
∑

y :h(y)=j

fy

Let ci be our estimate for fx where i = h(x). Note

fx ≤ ci .

If n = 2/ε, we shall show that with probability at least 1/2

ci ≤ fx + εm
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Count-Min Analysis: Expected Error is Small

Define random variable Z such that ci = fx + Z , i.e.,

Z =
∑
y 6=x

fyCy

where Cy = 1 if h(y) = i and 0 otherwise.

Since h is random

E [Z ] =
∑
y 6=x

fyE [Cy ] =
∑
y 6=x

fyP (h(y) = i) ≤ m/n = εm/2

By Markov inequality,

P (Z ≥ εm) ≤ εm/2

εm
= 1/2

and so ci ≤ fx + εm with probability at least 1/2 as required.
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Count-Min Analysis: Small Error With High Probability

Suppose we want an estimate f̃x such that with probability 0.999,

fx ≤ f̃x ≤ fx + mε .

Repeat process t = 14 times in parallel and return smallest estimate.

Say an estimate is “bad” if is exceeds fx + mε.

Probability all estimates are bad is (1/2)t ≤ 0.0001.

Hence, smallest estimate is ≤ fx +mε with probability at least 0.999.
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Count-Min Sketch Applications

Computing popular products. For example, A could be all of the
page views of products on amazon.com yesterday. Using CM, we
can are find the most frequently viewed products.

Computing frequent search queries. For example, A could be all
of the searches on Google yesterday. Using CM, one can find the
searches made most often.

Identifying heavy TCP flows. Here, A is a list of data packets
passing through a network switch, each annotated with a
source-destination pair of IP addresses. Using CM, one can find the
flows that are sending the most traffic. This is useful for, among
other things, identifying denial-of-service attacks.



Count-Min Sketch Randomized Algorithms Bonus: Some Data Stream Puzzles

Outline

1 Count-Min Sketch

2 Randomized Algorithms

3 Bonus: Some Data Stream Puzzles



Count-Min Sketch Randomized Algorithms Bonus: Some Data Stream Puzzles

Randomized Algorithms

Coming soon to a CMPSCI 311 class near you. . .

A randomized algorithm is an algorithm whose output is dependent
on both the problem being solved and a series of random decisions it
makes by tossing independent coins.

Monte-Carlo Algorithm: A randomized algorithm that runs for a
known amount of time and is likely to be correct

Las Vegas Algorithm: A randomized algorithm that is guaranteed to
find the right answer
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Data Stream Puzzles

Suppose that a stream of numbers consists of all values between 1
and 1000000 except one value that is missing. Can you find the
missing value without remembering the entire stream?

Keep track of the sum S of the values you observe.
The missing value is

(∑1000000
i=1 i

)
− S



Count-Min Sketch Randomized Algorithms Bonus: Some Data Stream Puzzles

Another Data Stream Puzzle

Suppose you want to pick an entry in the stream uniformly at
random but don’t know the length of the stream in advance. Can
you do this without remembering the entire stream?

Store the first value in the stream.
When you read the ith element of the stream, store this value with
probability 1/i and throw away the value you were currently storing.
If the final length of the stream is m, then the probability you are
storing the ith element is

1/i ×
(

1 − 1

i + 1

)
×
(

1 − 1

i + 2

)
× . . .

(
1 − 1

m

)
= 1/i × i

i + 1
× i + 1

i + 2
× . . .

m − 1

m
= 1/m
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A Final Data Stream Puzzle

Suppose you observe a sequence of numbered balls being added or
removed to a bucket that is initially empty. For example,

add 1, remove 1, add 6, add 7, add 6, remove 7, . . .

and note that multiple balls can have the same number.

When the sequence stops, can you determine whether all the balls in
the bucket have the same number while only using a little memory?



Count-Min Sketch Randomized Algorithms Bonus: Some Data Stream Puzzles

The Solution

As the stream is observed, maintain three counters m, t1 and t2.

When we observe “add i”:

m← m + 1 t1 ← t1 + i t2 ← t2 + i2

When we observe “remove i”:

m← m − 1 t1 ← t1 − i t2 ← t2 − i2

If fi is the number of times i is in the bucket then

m =
∑

fi t1 =
∑

i × fi t2 =
∑

i2 × fi

Theorem: All the balls have the same number if (t1/m)2 = t2/m.
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Proof of Theorem

Consider the random variable X defined by picking a random ball in
the bucket and letting X be the number of this ball. Note that

P(X = i) = fi/m

The expectation of X is:

E [X ] =
∑

i × fi
m

= t1/m

and

E
[
X 2
]

=
∑

i2 × fi
m

= t2/m

X always takes the same value if var(X ) = 0. Since

var(X ) = E (X 2)− E (X )2

X always takes the same value if

t2/m = E (X 2) = E (X )2 = (t1/m)2
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