MC and BN

CMPSCI 240: Reasoning about Uncertainty

Lecture 18: More Bayesian Networks and Balls and Bins

Andrew McGregor

University of Massachusetts

Last Compiled: April 4, 2017

Recap	MC and BN	Balls and Bins

Outline

1 Recap

2 Relationship between Markov Chains and Bayesian Networks

3 Balls and Bins

Recap	MC and BN	Balls and Bins
●00000000000	OO	0000
Factorization		

Given events A, B, C the multiplication rule said:

$$P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B)$$

Note that we can factorize in different orders, e.g.,

$$P(A \cap B \cap C) = P(C \cap A \cap B) = P(C)P(A|C)P(B|A \cap C)$$

Same is true with events based on random variables, e.g.,

$$P(X = a, Y = b, Z = c) = P(X = a)P(Y = b|X = a)P(Z = c|X = a, Y = b)$$

and

$$P(X = a, Y = b, Z = c) = P(Z = c)P(X = a|Z = c)P(Z = c|X = a, Y = b)$$

Recap	MC and BN	Balls and Bins
0●0000000000	00	0000
Factorization		

When you have many variables, things get messy and it's hard to store all the conditional probabilities:

$$P(W = a, X = b, Y = c, Z = d) = P(W = a)$$

$$\times P(X = b|W = a)$$

$$\times P(Y = c|W = a, X = b)$$

$$\times P(Z = d|W = a, X = b, Y = c)$$

Even if each of these four random variables only takes 10 different values, you'd need roughly $10^4 = 10000$ different probabilities to keep track of the joint distribution. Wouldn't it be nice if you could ignore some of the conditioning? This is where Bayesian networks come in.

Recap	MC and BN	Balls and Bins
0000000000		

Bayesian Networks

- A Bayesian network uses conditional independence assumptions to compactly represent a joint PMF of random variables *X*₁,..., *X*_n.
- We use a directed acyclic graph to encode conditional independence assumptions.
 - The *n* nodes represent the random variables X_1, \ldots, X_n .
 - A directed edge $X_j \rightarrow X_i$ means X_j is a "parent" of X_i .
 - The set of variables that are parents of X_i is denoted Pa_i .

Recap	MC and BN	Balls and Bins
0000000000		

Example: Bayesian Network

$$X_1 \longrightarrow X_3 \longrightarrow X_2$$

$$Pa_1 = \{\}, Pa_3 = \{X_1\}, Pa_2 = \{X_3\}$$

For any values a_1, a_2, a_3 ,

$$P(X_1 = a_1, X_2 = a_2, X_3 = a_3) =$$

$$P(X_1 = a_1)P(X_3 = a_3 | X_1 = a_1)P(X_2 = a_2 | X_3 = a_3)$$

The above statement is commonly abbreviated as

$$P(X_1, X_2, X_3) = P(X_1)P(X_3|X_1)P(X_2|X_3)$$

Recap	MC and BN	Balls and Bins
0000000000		
		í -

Example: Graph to Factorization

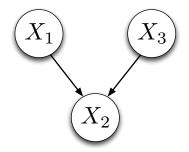
$$(X_1)$$
 (X_2) (X_3)

 $\mathit{Pa}_1 = \{\}, \mathit{Pa}_3 = \{\}, \mathit{Pa}_2 = \{\}$

 $P(X_1, X_2, X_3) = P(X_1)P(X_3)P(X_2)$

Recap	MC and BN	Balls and Bins
0000000000		

Example: Graph to Factorization

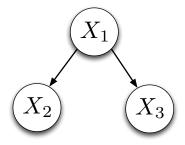


$$\mathit{Pa}_1 = \{\}, \mathit{Pa}_3 = \{\}, \mathit{Pa}_2 = \{\mathit{X}_1, \mathit{X}_3\}$$

 $P(X_1, X_2, X_3) = P(X_1)P(X_3)P(X_2|X_1, X_3)$

Recap	MC and BN	Balls and Bins
0000000000		

Example: Graph to Factorization



$$Pa_1 = \{\}, Pa_3 = \{X_1\}, Pa_2 = \{X_1\}$$

 $P(X_1, X_2, X_3) = P(X_1)P(X_3|X_1)P(X_2|X_1)$

00000000000 00000 0000	

Example: Factorization to Graph

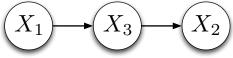
D(V)

v

$$P(X_1, X_2, X_3) = P(X_1)P(X_3|X_1)P(X_2|X_3)$$

$$Pa_1 = \{\}, Pa_3 = \{X_1\}, Pa_2 = \{X_3\}$$

 $(\mathbf{V}) = \mathbf{D}(\mathbf{V} | \mathbf{V}) \mathbf{D}(\mathbf{V} | \mathbf{V})$

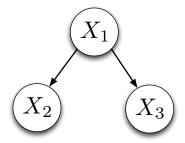


Recap	MC and BN	Balls and Bins
00000000000		

Example: Factorization to Graph

$$P(X_1, X_2, X_3) = P(X_1)P(X_3|X_1)P(X_2|X_1)$$

$$Pa_1 = \{\}, Pa_3 = \{X_1\}, Pa_2 = \{X_1\}$$



The Bayesian Network Theorem

Definition: A joint PMF $P(X_1, ..., X_d)$ is a Bayesian network with respect to a directed acyclic graph *G* with parent sets $\{Pa_1, ..., Pa_d\}$ if and only if:

$$P(X_1,...,X_d) = \prod_{i=1}^d P(X_i|Pa_i)$$

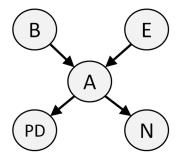
In other words, to be a valid Bayesian network for a given graph G, the joint PMF must factorize according to G.

The Alarm Network: Random Variable

- Consider the following situation: You live in quiet neighborhood in the suburbs of LA. There are two reasons the alarm system in your house will go off: your house is broken into or there is an earthquake. If your alarm goes off you might get a call from the police department. You might also get a call from your neighbor.
- Question What random variables can we use to describe this problem?
- Answer: Break-in (B), Earthquake (E), Alarm (A), Police Department calls (PD), Neighbor calls (N).

The Alarm Network: Factorization

- Denote the Boolean random variables: Break-in (B), Earthquake (E), Alarm (A), Police Department calls (PD), Neighbor calls (N).
 E.g., {B = 1} is the event there is a break-in and {B = 0} is the even that there isn't a break-in.
- The joint distribution can be factorized as follows:



P(B, E, A, PD, N) = P(B)P(E)P(A|B, E)P(PD|A)P(N|A)

Recap	MC and BN	Balls and Bins
0000000000	00	0000

The Alarm Network: Factor Tables

Factor tables give us the necessary information to compute everything we want to know:



- Joint Query: What is the probability that there is a break-in, but no earthquake, the alarm goes off, the police call, but your neighbor does not call?
- Marginal Query: What is the probability that there was a break-in, but no earthquake, the police call, but your neighbor does not call?
- Conditional Query: What is the probability that the alarm went off given that there was a break-in, but no earthquake, the police call, but your neighbor does not call?

MC and BN	Balls and Bins

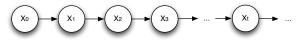
Outline

2 Relationship between Markov Chains and Bayesian Networks

3 Balls and Bins

	IVIC and BIN	Balls and Bins
	•0	
Delationality in Dela	and an Albert and a	
Relationship to Baye	esian Networks	
\boldsymbol{J}		

- The infinite set of random variables defined by a Markov chain, X₀, X₁, X₂,... have a Bayesian Network with a special form.
- Since X_t only "depends" on X_{t-1} , i.e., X_t is independent of $X_0, X_1, \ldots, X_{t-2}$ conditioned on X_{t-1} , a the Bayesian network is:



For example,

$$P(X_0 = a_0, X_1 = a_1, \dots, X_t = a_t)$$

= $P(X_0 = a_0)P(X_1 = a_1|X_0 = a_0)\dots P(X_t = a_t|X_{t-1} = a_{t-1})$

and

$$P(X_t = a_t | X_{t-1} = a_{t-1}, X_{t-2} = a_{t-2}, \dots, X_0 = a_0)$$

= $P(X_t = a_t | X_{t-1} = a_{t-1})$

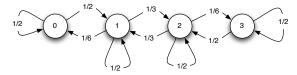
	MC and BN	Balls and Bins		
	00			
Careful About Independence				

Common mistake: If a sequence X₀, X₁, X₂,... is a Markov chain then for any a_t, a_{t-1},..., a₀,

$$P(X_t = a_t | X_{t-1} = a_{t-1}, X_{t-2} = a_{t-2}, \dots, X_0 = a_0)$$
$$= P(X_t = a_t | X_{t-1} = a_{t-1})$$

but this doesn't mean, e.g., X_t and X_{t-2} are independent.

• E.g., consider the Markov chain with $X_0 = 0$ and transition graph:



 $P(X_1 = 0) = 1/2, P(X_3 = 3) = 1/36$ but $P(X_1 = 0, X_3 = 3) = 0.$

MC and BN	Balls and Bins

Outline

1 Recap

2 Relationship between Markov Chains and Bayesian Networks

3 Balls and Bins

MC and BN	Balls and Bins
	0000

Balls and Bins: Birthday Paradox

Throw m balls into n bins where each throw is independent.

- How large must m be such that it is likely there exists a bin with at least two balls? (Birthday Paradox)
- Suppose everyone's birthday is independent and each birthday is uniformly distributed across n = 365 days of the year.
- What's the probability that *m* people have different birthdays?

$$\frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \times \dots \frac{365-m+1}{365}$$

For m = 23 this equals 0.4927..., hence if there are at least 23 people it's more likely than not that there's a common birthday.

Throw m balls into n bins where each throw is independent.

- How large must m be such that it is likely that all bins get at least one ball? (Coupon Collecting)
- Previously we showed that the expected number of balls that need to be thrown is:

$$1+\frac{n}{n-1}+\frac{n}{n-2}+\frac{n}{n-3}+\ldots+n\approx n\ln n$$

Let B_i be the event that throwing m balls, the bin i remains empty.
Then Pr(B_i) = (1 - 1/n)^m ≤ e^{-m/n} since 1 - x ≤ e^{-x}
Hence P(there is at least one bin that is empty) is

$$Pr(B_1 \cup B_2 \cup ... \cup B_n) \leq \sum_{i=1}^n Pr(B_i) \leq ne^{-m/n}$$

If $m = 2n \ln n$ then $P(\text{there is at least one bin that is empty}) \le \frac{1}{n}$