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Factorization

Given events A,B,C the multiplication rule said:

P(A ∩ B ∩ C ) = P(A)P(B|A)P(C |A ∩ B)

Note that we can factorize in different orders, e.g.,

P(A ∩ B ∩ C ) = P(C ∩ A ∩ B) = P(C )P(A|C )P(B|A ∩ C )

Same is true with events based on random variables, e.g.,

P(X = a,Y = b,Z = c) = P(X = a)P(Y = b|X = a)P(Z = c |X = a,Y = b)

and

P(X = a,Y = b,Z = c) = P(Z = c)P(X = a|Z = c)P(Z = c |X = a,Y = b)
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Factorization

When you have many variables, things get messy and it’s hard to store all
the conditional probabilities:

P(W = a,X = b,Y = c ,Z = d) = P(W = a)

×P(X = b|W = a)

×P(Y = c |W = a,X = b)

×P(Z = d |W = a,X = b,Y = c)

Even if each of these four random variables only takes 10 different values,
you’d need roughly 104 = 10000 different probabilities to keep track of
the joint distribution. Wouldn’t it be nice if you could ignore some of the
conditioning? This is where Bayesian networks come in.
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Bayesian Networks

A Bayesian network uses conditional independence assumptions to
compactly represent a joint PMF of random variables X1, . . . ,Xn.

We use a directed acyclic graph to encode conditional independence
assumptions.

The n nodes represent the random variables X1, . . . ,Xn.
A directed edge Xj → Xi means Xj is a “parent” of Xi .
The set of variables that are parents of Xi is denoted Pai .
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Example: Bayesian Network

X1 X2X3

Pa1 = {},Pa3 = {X1},Pa2 = {X3}
For any values a1, a2, a3,

P(X1 = a1,X2 = a2,X3 = a3) =

P(X1 =a1)P(X3 =a3|X1 =a1)P(X2 =a2|X3 =a3)

The above statement is commonly abbreviated as

P(X1,X2,X3) = P(X1)P(X3|X1)P(X2|X3)
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Example: Graph to Factorization

X1 X2 X3

Pa1 = {},Pa3 = {},Pa2 = {}

P(X1,X2,X3) = P(X1)P(X3)P(X2)
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Example: Graph to Factorization

X1

X2

X3

Pa1 = {},Pa3 = {},Pa2 = {X1,X3}

P(X1,X2,X3) = P(X1)P(X3)P(X2|X1,X3)
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Example: Graph to Factorization

X1

X2 X3

Pa1 = {},Pa3 = {X1},Pa2 = {X1}

P(X1,X2,X3) = P(X1)P(X3|X1)P(X2|X1)



Recap MC and BN Balls and Bins

Example: Factorization to Graph

P(X1,X2,X3) = P(X1)P(X3|X1)P(X2|X3)

Pa1 = {},Pa3 = {X1},Pa2 = {X3}

X1 X2X3
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Example: Factorization to Graph

P(X1,X2,X3) = P(X1)P(X3|X1)P(X2|X1)

Pa1 = {},Pa3 = {X1},Pa2 = {X1}

X1

X2 X3
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The Bayesian Network Theorem

Definition: A joint PMF P(X1, ...,Xd) is a Bayesian network with
respect to a directed acyclic graph G with parent sets {Pa1, ...,Pad}
if and only if:

P(X1, ...,Xd) =
d∏

i=1

P(Xi |Pai )

In other words, to be a valid Bayesian network for a given graph G ,
the joint PMF must factorize according to G .
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The Alarm Network: Random Variable

Consider the following situation: You live in quiet neighborhood in
the suburbs of LA. There are two reasons the alarm system in your
house will go off: your house is broken into or there is an
earthquake. If your alarm goes off you might get a call from the
police department. You might also get a call from your neighbor.

Question What random variables can we use to describe this
problem?

Answer: Break-in (B), Earthquake (E), Alarm (A), Police
Department calls (PD), Neighbor calls (N).
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The Alarm Network: Factorization

Denote the Boolean random variables: Break-in (B), Earthquake
(E), Alarm (A), Police Department calls (PD), Neighbor calls (N).
E.g., {B = 1} is the event there is a break-in and {B = 0} is the
even that there isn’t a break-in.

The joint distribution can be factorized as follows:

P(B,E ,A,PD,N) = P(B)P(E )P(A|B,E )P(PD|A)P(N|A)
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The Alarm Network: Factor Tables

Factor tables give us the necessary information to compute everything we
want to know:

Joint Query: What is the probability that there is a break-in, but
no earthquake, the alarm goes off, the police call, but your neighbor
does not call?
Marginal Query: What is the probability that there was a break-in,
but no earthquake, the police call, but your neighbor does not call?
Conditional Query: What is the probability that the alarm went off
given that there was a break-in, but no earthquake, the police call,
but your neighbor does not call?



Recap MC and BN Balls and Bins

Outline

1 Recap

2 Relationship between Markov Chains and Bayesian Networks

3 Balls and Bins



Recap MC and BN Balls and Bins

Relationship to Bayesian Networks

The infinite set of random variables defined by a Markov chain,
X0,X1,X2, . . . have a Bayesian Network with a special form.

Since Xt only “depends” on Xt−1, i.e., Xt is independent of
X0,X1, . . . ,Xt−2 conditioned on Xt−1, a the Bayesian network is:

X0 X1 X2 X3 ...     Xt    ...

For example,

P(X0 = a0,X1 = a1, . . . ,Xt = at)

= P(X0 = a0)P(X1 = a1|X0 = a0) . . .P(Xt = at |Xt−1 = at−1)

and

P(Xt = at |Xt−1 = at−1,Xt−2 = at−2, . . . ,X0 = a0)

= P(Xt = at |Xt−1 = at−1)
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Careful About Independence

Common mistake: If a sequence X0,X1,X2, . . . is a Markov chain
then for any at , at−1, . . . , a0,

P(Xt = at |Xt−1 = at−1,Xt−2 = at−2, . . . ,X0 = a0)

= P(Xt = at |Xt−1 = at−1)

but this doesn’t mean, e.g., Xt and Xt−2 are independent.

E.g., consider the Markov chain with X0 = 0 and transition graph:

0 1 2 3

1/2 1/2

1/2
1/6

1/21/3

1/31/2

1/6

1/2

P(X1 = 0) = 1/2,P(X3 = 3) = 1/36 but P(X1 = 0,X3 = 3) = 0.
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Balls and Bins: Birthday Paradox

Throw m balls into n bins where each throw is independent.

How large must m be such that it is likely there exists a bin with at
least two balls? (Birthday Paradox)

Suppose everyone’s birthday is independent and each birthday is
uniformly distributed across n = 365 days of the year.

What’s the probability that m people have different birthdays?

365

365
× 364

365
× 363

365
× . . .

365−m + 1

365

For m = 23 this equals 0.4927 . . ., hence if there are at least 23
people it’s more likely than not that there’s a common birthday.



Recap MC and BN Balls and Bins

Balls and Bins: Coupon Collecting

Throw m balls into n bins where each throw is independent.

How large must m be such that it is likely that all bins get at least
one ball? (Coupon Collecting)

Previously we showed that the expected number of balls that need
to be thrown is:

1 +
n

n − 1
+

n

n − 2
+

n

n − 3
+ . . . + n ≈ n ln n

Let Bi be the event that throwing m balls, the bin i remains empty.

Then Pr(Bi ) =
(
1− 1

n

)m ≤ e−
m
n since 1− x ≤ e−x

Hence P(there is at least one bin that is empty) is

Pr(B1 ∪ B2 ∪ ... ∪ Bn) ≤
n∑

i=1

Pr(Bi ) ≤ ne−m/n

If m = 2n ln n then P(there is at least one bin that is empty) ≤ 1
n
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