
Markov Chains Steady State Theorem

CMPSCI 240: Reasoning about Uncertainty
Lecture 15: Steady-State Theorem

Andrew McGregor

University of Massachusetts

Last Compiled: March 23, 2017



Markov Chains Steady State Theorem

Outline

1 Markov Chains

2 Steady State Theorem



Markov Chains Steady State Theorem

Analyzing the Queue at Earth Foods Cafe

Consider a queue at Earth Foods Cafe

Every minute, someone joins the queue. . .

With probability 1 if the queue has length 0
With probability 2/3 if the queue has length 1
With probability 1/3 if the queue has length 2
With probability 0 if the queue has length 3.

Every minute, the server serves a customer with probability 1/2.

Suppose 1 person in line at noon. How many people in line at 12:10pm?
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States with Transition Probabilities

Weight pij on arrow from state i to state j indicates the probability
of transitioning to state j given we’re in state i .
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Can work out things like “what’s the probability we’re in state 2
after two steps if we’re currently in state 3.”
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Markov Chain

A Markov Chain consists:

A set of states: {s1, . . . , sk}
A matrix P of transition probabilities {pij : 1 ≤ i , j ≤ k}
An initial state si .

A Markov Chain defines a series of random variables X0,X1,X2, . . . where

X0 = i

For all t = 1, 2, 3, . . .

P (Xt = j |Xt−1 = i) = pij

Write the distribution of each Xt as

vt = (P (Xt = 1) ,P (Xt = 2) , . . . ,P (Xt = k))

Note: The value of Xt only depends on the value of Xt−1, e.g.,

P (Xt = j |Xt−1 = i ,Xt−2 = h) = P (Xt = j |Xt−1 = i) = pij
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Analyzing Markov Chains via Matrices

Define transition probability matrix:

A =


p0,0 p0,1 p0,2 p0,3
p1,0 p1,1 p1,2 p1,3
p2,0 p2,1 p2,2 p2,3
p3,0 p3,1 p3,2 p3,3

 =


1/2 1/2 0 0
1/6 1/2 1/3 0

0 1/3 1/2 1/6
0 0 1/2 1/2


Markov Chain Theorem Given vt−1, we can compute

vt = vt−1A

and so vt = vt−1A = vt−2AA = vt−3AAA = . . . = v0A
t .

Proof: By the law of total probability

vt [j ] = P (Xt = j) =
∑
i

P (Xt = j |Xt−1 = i)P (Xt−1 = i) =
∑
i

pi,jvt−1[i ]

and so vt = vt−1A as claimed.
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Simulation of the queue if there is initially one person

v0 = 〈0.000, 1.000, 0.000, 0.000〉
v1 = 〈0.167, 0.500, 0.333, 0.000〉
v2 = 〈0.167, 0.444, 0.333, 0.056〉
v3 = 〈0.158, 0.416, 0.342, 0.084〉
v4 = 〈0.148, 0.401, 0.352, 0.099〉
v5 = 〈0.142, 0.391, 0.359, 0.109〉
v6 = 〈0.136, 0.386, 0.364, 0.114〉
v7 = 〈0.133, 0.382, 0.368, 0.118〉
v8 = 〈0.130, 0.380, 0.370, 0.120〉

...
...

...

v∞ = 〈0.125, 0.375, 0.375, 0.125〉
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Simulation of the queue if there is initially three people

v0 = 〈0.000, 0.000, 0.000, 1.000〉
v1 = 〈0.000, 0.000, 0.500, 0.500〉
v2 = 〈0.000, 0.167, 0.500, 0.333〉
v3 = 〈0.028, 0.250, 0.472, 0.251〉
v4 = 〈0.056, 0.296, 0.404, 0.204〉
v5 = 〈0.078, 0.324, 0.423, 0.177〉
v6 = 〈0.093, 0.341, 0.407, 0.159〉
v7 = 〈0.104, 0.353, 0.397, 0.148〉
v8 = 〈0.111, 0.360, 0.389, 0.140〉

...
...

...

v∞ = 〈0.125, 0.375, 0.375, 0.125〉
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Question

Do all Markov chains have the property that eventually the distribution
settles to the “same steady” state regardless of the initial state?

Definition

If v = vA, we say v is a steady state distribution for the Markov Chain.

For the queueing example, if v = (a, b, c , d) then

(a, b, c , d)=(a, b, c , d)
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Solving a = a
2 + b

6 , b = a
2 + b

2 + c
3 , c = b

3 + c
2 + d

2 and d = c
6 + d

2 gives

v = (0.125, 0.375, 0.375, 0.125)
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Question

Theorem

“Most” Markov Chains have a unique steady state distribution regardless
of initial state that is approached by successive iterations from any
starting distributions.
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Irreducible Markov Chains

Example

Consider the Markov Chain with transition matrix:

A =


0 0.9 0.05 0.05

0.2 0.8 0 0
0 0 1 0
0 0 0 1


This Markov chain doesn’t converge to a unique steady state.

Definition

A Markov chain is irreducible if in the transition graph there exists a path
from every state to every other state, i.e., you can’t get stuck in a small
group of nodes.
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Irreducible Markov Chains
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Periodic Markov Chains

Example

Consider the Markov Chain with transition matrix:
0 0.5 0 0.5

0.75 0 0.25 0
0 0.75 0 0.25

0.75 0 0.25 0


This Markov chain doesn’t converge at all!

Definition

An irreducible Markov chain with transition matrix A is called periodic if
there is some t ∈ {2, 3, . . .} such that there exists a state s which can be
visited only at time {t, 2t, 3t, 4t, . . .} steps, that is with a period of t. If
A is not periodic (t = 1) we call the chain aperiodic.
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Periodic/Aperiodic Markov Chains
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Steady State Theorem

Definition

Consider Markov chain with k states and let v∗ = (v∗[1], . . . , v∗[k]) be a
probability distribution on the states of C . We say that the Markov chain
approaches v∗ if for any arbitrarily small ε > 0, there exists a sufficiently
large t such that for any i and any starting distribution, then

|P (Xt = i)− v∗[i ]| ≤ ε

Theorem

If a Markov Chain is aperiodic and irreducible then there exists a
distribution v∗ such that vt approaches v

∗.
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Steady State Distribution: 2 state case

Consider a Markov chain C with 2 states and transition matrix

A =

(
1− a a
b 1− b

)
for some 0 ≤ a, b ≤ 1

Since C is irreducible: a, b > 0

Since C is aperiodic: a + b < 2

Let v∗ = (c , 1− c) be a steady state distribution, i.e., v∗ = v∗A

Solving v∗ = v∗A gives:

v∗ =

(
b

a + b
,

a

a + b

)
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Steady State Distribution: 2 state case (continued)

We say vt converges to v∗ if for any ε > 0, there exists t∗ such that
for all t ≥ t∗ corresponding entries of vt and v∗ differ by at most ε.

Suppose the start distribution is

v = (c + γ, 1− c − γ)

i.e., entries are |γ| away from the corresponding entry in v∗

After one more step the distribution is

vA = (c + γ(1− a− b), 1− c − γ(1− a− b))

i.e., entries are now only |γ(1− a− b)| < |γ| away.

Hence if we pick t∗ such that |1− a− b|t∗ < ε then after t∗ or more
steps entries will differ by at most

|γ(1− a− b)t
∗
| ≤ ε|γ| ≤ ε
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