Outline

1. Review
2. Conditional PMFs
3. Expectation and Variance
4. More Markov and Chebyshev
Expectation and Variance Review

- The expected value $E[X]$ of a random variable X is a probability-weighted average of the possible values of X:

$$E[X] = \sum_k k P(X = k)$$
The expected value $E[X]$ of a random variable X is a probability-weighted average of the possible values of X:

$$E[X] = \sum_{k} k P(X = k)$$

If X is a random variable and $f : \mathbb{R} \rightarrow \mathbb{R}$ then $Y = f(X)$ is also a random variable with expectation

$$E(Y) = \sum_{k} f(k)P(X = k)$$
The expected value $E[X]$ of a random variable X is a probability-weighted average of the possible values of X:

$$E[X] = \sum_{k} k P(X = k)$$

If X is a random variable and $f : \mathbb{R} \rightarrow \mathbb{R}$ then $Y = f(X)$ is also a random variable with expectation

$$E(Y) = \sum_{k} f(k)P(X = k)$$

The variance is quantifies how close to $\mu = E[X]$ we expect X to be:

$$\text{var}(X) = E[(X - \mu)^2]$$
The expected value \(E[X] \) of a random variable \(X \) is a probability-weighted average of the possible values of \(X \):

\[
E[X] = \sum_k k P(X = k)
\]

If \(X \) is a random variable and \(f : \mathbb{R} \to \mathbb{R} \) then \(Y = f(X) \) is also a random variable with expectation

\[
E(Y) = \sum_k f(k)P(X = k)
\]

The variance is quantifies how close to \(\mu = E[X] \) we expect \(X \) to be:

\[
\text{var}(X) = E[(X - \mu)^2] = E[X^2] - \mu^2.
\]
The expected value $E[X]$ of a random variable X is a probability-weighted average of the possible values of X:

$$E[X] = \sum_k k P(X = k)$$

If X is a random variable and $f : \mathbb{R} \rightarrow \mathbb{R}$ then $Y = f(X)$ is also a random variable with expectation

$$E(Y) = \sum_k f(k)P(X = k)$$

The variance is quantifies how close to $\mu = E[X]$ we expect X to be:

$$\text{var}(X) = E[(X - \mu)^2] = E[X^2] - \mu^2.$$

The standard deviation of X is $\sigma_X = \sqrt{\text{var}(X)}$.
Markov and Chebyshev Bounds

- **Markov Bound:** For an non-negative random variable X,

$$P(X \geq c) \leq \frac{E(X)}{c}$$

- **Chebyshev Bound:** For a random variable X,

$$P(|X - E(X)| \geq c) \leq \frac{Var(X)}{c^2}$$
Multiple Random Variables

Consider two random variables, X and Y mapping from Ω to \mathbb{R}. For $i, j \in \mathbb{R}$, we can define the event $\{X = i, Y = j\} = \{X = i\} \cap \{Y = j\} = \{o \in \Omega | X(o) = i \text{ and } Y(o) = j\}$. The probabilities of these events give the joint PMF of X and Y: $P(X = i, Y = j) = P(\{X = i, Y = j\})$.

Multiple Random Variables

- Consider two random variables, X and Y mapping from Ω to \mathbb{R}.
Consider two random variables, X and Y mapping from Ω to \mathbb{R}.

For $i, j \in \mathbb{R}$, we can define the event

$$\{X = i, Y = j\} = \{X = i\} \cap \{Y = j\}$$
Multiple Random Variables

- Consider two random variables, X and Y mapping from Ω to \mathbb{R}.
- For $i, j \in \mathbb{R}$, we can define the event

$$
\{X = i, Y = j\} = \{X = i\} \cap \{Y = j\} = \{o \in \Omega \mid X(o) = i \text{ and } Y(o) = j\}
$$
Consider two random variables, X and Y mapping from Ω to \mathbb{R}.

For $i, j \in \mathbb{R}$, we can define the event

$$\{X = i, Y = j\} = \{X = i\} \cap \{Y = j\} = \{o \in \Omega \mid X(o) = i \text{ and } Y(o) = j\}$$

The probabilities of these events give the joint PMF of X and Y:

$$P(X = i, Y = j) = P(\{X = i, Y = j\})$$
Tabular Representation of Joint PMFs

<table>
<thead>
<tr>
<th></th>
<th>(Y = 1)</th>
<th>(Y = 2)</th>
<th>(Y = 3)</th>
<th>(Y = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X = 1)</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>(X = 2)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>(X = 3)</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Tabular Representation of Joint PMFs

<table>
<thead>
<tr>
<th></th>
<th>Y = 1</th>
<th>Y = 2</th>
<th>Y = 3</th>
<th>Y = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X = 1</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>X = 2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>X = 3</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- e.g., \(P(X = 2, Y = 3) = 0.1, \ P(X = 3, Y = 1) = 0, \ldots \)
Tabular Representation of Joint PMFs

<table>
<thead>
<tr>
<th></th>
<th>$Y = 1$</th>
<th>$Y = 2$</th>
<th>$Y = 3$</th>
<th>$Y = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = 1$</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>$X = 2$</td>
<td>0.05</td>
<td>0.05</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>$X = 3$</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- e.g., $P(X = 2, Y = 3) = 0.1$, $P(X = 3, Y = 1) = 0$, ...
- Given the joint PMF, how can we work out $P(X = i)$ and $P(Y = j)$?
Tabular Representation of Joint PMFs

<table>
<thead>
<tr>
<th>X\Y</th>
<th>Y = 1</th>
<th>Y = 2</th>
<th>Y = 3</th>
<th>Y = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X = 1</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>X = 2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>X = 3</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- e.g., $P(X=2, Y=3) = 0.1$, $P(X=3, Y=1) = 0$, ...
- Given the joint PMF, how can we work out $P(X = i)$ and $P(Y = j)$?

\[
P(X = i) = \sum_j P(X = i, Y = j)
\]

\[
P(Y = j) = \sum_i P(X = i, Y = j)
\]
Tabular Representation of Joint PMFs

<table>
<thead>
<tr>
<th></th>
<th>Y = 1</th>
<th>Y = 2</th>
<th>Y = 3</th>
<th>Y = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X = 1</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>X = 2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>X = 3</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- e.g., \(P(X = 2, Y = 3) = 0.1, P(X = 3, Y = 1) = 0, \ldots \)
- Given the joint PMF, how can we work out \(P(X = i) \) and \(P(Y = j) \)?

\[
P(X = i) = \sum_j P(X = i, Y = j)
\]

\[
P(Y = j) = \sum_i P(X = i, Y = j)
\]

- If we start with the joint PMF of \(X \) and \(Y \), we refer to \(P(X) \) as the marginal PMF of \(X \) and \(P(Y) \) as the marginal PMF of \(Y \).
<table>
<thead>
<tr>
<th></th>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Review</td>
</tr>
<tr>
<td>2</td>
<td>Conditional PMFs</td>
</tr>
<tr>
<td>3</td>
<td>Expectation and Variance</td>
</tr>
<tr>
<td>4</td>
<td>More Markov and Chebyshev</td>
</tr>
</tbody>
</table>
Conditional PMFs

- **Conditional PMF of X given Y**:

 \[P(X = i | Y = j) = P(\{X = i\} | \{Y = j\}) \].
Conditioning

- **Conditional PMF of** X **given** Y:

 $$P(X = i | Y = j) = P(\{X = i\} | \{Y = j\}).$$

- **Compute** $P(X | Y)$ **using the definition of conditional probability**:

 $$P(X = i | Y = j) = \frac{P(X = i, Y = j)}{P(Y = j)}$$

 since for any two events A, B we have $P(A | B) = \frac{P(A \cap B)}{P(B)}$.
Conditioning

- Conditional PMF of X given Y:

$$P(X = i | Y = j) = P(\{X = i\} | \{Y = j\}) .$$

- Compute $P(X | Y)$ using the definition of conditional probability:

$$P(X = i | Y = j) = \frac{P(X = i, Y = j)}{P(Y = j)}$$

since for any two events A, B we have $P(A | B) = \frac{P(A \cap B)}{P(B)}$.

- The conditional probability $P(X = i | Y = j)$ is the joint probability $P(X = i, Y = j)$ normalized by the marginal $P(Y = j)$.
Conditioning

- Conditional PMF of X given Y:

$$P(X = i | Y = j) = P(\{X = i\} | \{Y = j\})$$.

- Compute $P(X | Y)$ using the definition of conditional probability:

$$P(X = i | Y = j) = \frac{P(X = i, Y = j)}{P(Y = j)}$$

since for any two events A, B we have $P(A | B) = \frac{P(A \cap B)}{P(B)}$.

- The conditional probability $P(X = i | Y = j)$ is the joint probability $P(X = i, Y = j)$ normalized by the marginal $P(Y = j)$.

- An equivalent definition of independence is X and Y are independent if

for all i, j, $P(X = i | Y = j) = P(X = i)$
Conditional PMFs

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X\Y</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Conditional PMFs

<table>
<thead>
<tr>
<th>X \ Y</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(Y)</td>
<td>0.15</td>
<td>0.25</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Conditional PMFs

<table>
<thead>
<tr>
<th>X \ Y</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(Y)</td>
<td>0.15</td>
<td>0.25</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X \ Y</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.66</td>
<td>0.4</td>
<td>0</td>
<td>0.66</td>
</tr>
<tr>
<td>2</td>
<td>0.33</td>
<td>0.2</td>
<td>0.33</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.4</td>
<td>0.66</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Outline

1. Review
2. Conditional PMFs
3. Expectation and Variance
4. More Markov and Chebyshev
Given two random variables X and Y and a function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$,

$$Z = f(X, Y)$$

is a new random variable where

$$E(Z) = \sum_{x, y} f(x, y)P(X = x, Y = y)$$

and $var(Z) = E(Z^2) - (E(Z))^2$.

Linearity of Expectation: If $Z = X + Y$,

$$E(Z) = E(X + Y) = E(X) + E(Y)$$

Linearity of Variance: If $Z = X + Y$,

$$var(Z) = var(X + Y) = var(X) + var(Y)$$

if X and Y are independent, i.e., for all i, j

$$P(X = i, Y = j) = P(X = i)P(Y = j)$$.
Functions of Two Random Variables

- Given two random variables X and Y and a function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$,

 $$Z = f(X, Y)$$

 is a new random variable where

 $$E(Z) = \sum_{x, y} f(x, y)P(X = x, Y = y)$$ and $\text{var}(Z) = E(Z^2) - (E(Z))^2$.

- **Linearity of Expectation**: If $Z = X + Y$,

 $$E(Z) = E(X + Y) = E(X) + E(Y)$$
Functions of Two Random Variables

- Given two random variables X and Y and a function $f : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$,

 \[Z = f(X, Y) \]

 is a new random variable where

 \[E(Z) = \sum_{x,y} f(x, y)P(X = x, Y = y) \text{ and } var(Z) = E(Z^2) - (E(Z))^2. \]

- **Linearity of Expectation:** If $Z = X + Y$,

 \[E(Z) = E(X + Y) = E(X) + E(Y) \]

- **Linearity of Variance:** If $Z = X + Y$,

 \[var(Z) = var(X + Y) = var(X) + var(Y) \]

 if X and Y are independent, i.e., for all i, j

 \[P(X = i, Y = j) = P(X = i)P(Y = j). \]
Linearity of Expectation

Lemma: Given two random variables X, Y, and $Z = X + Y$ then

Linearity of Expectation

■ **Lemma:** Given two random variables X, Y, and $Z = X + Y$ then

\[
\]

■ **Proof:** Generalized expected value rule.

\[
E[Z] = \sum_{a} \sum_{b} (a + b) \cdot P(X = a, Y = b)
\]

\[
= \sum_{a} \sum_{b} a \cdot P(X = a, Y = b) + \sum_{a} \sum_{b} b \cdot P(X = a, Y = b)
\]

\[
= \sum_{a} a \sum_{b} P(X = a, Y = b) + \sum_{b} b \sum_{a} P(X = a, Y = b)
\]

\[
= \sum_{a} aP(X = a) + \sum_{b} bP(Y = b) = E(X) + E(Y)
\]
Lemma: If X and Y are independent then $E[XY] = E[X]E[Y]$:
Lemma: If X and Y are independent then $E[XY] = E[X]E[Y]$.

Proof:

\[
E[XY] = \sum_{a} \sum_{b} ab \cdot P(X = a, Y = b)
\]

\[
= \sum_{a} \sum_{b} ab \cdot P(X = a)P(Y = b)
\]

\[
= \sum_{a} a \cdot P(X = a) \cdot \sum_{b} b \cdot P(Y = b)
\]

\[
= E[X]E[Y]
\]
Lemma: If X and Y are independent then

$$\text{var}(X + Y) = \text{var}(X) + \text{var}(Y)$$
Variance of Sums of Random Variables

Lemma: If X and Y are independent then

$$\text{var}(X + Y) = \text{var}(X) + \text{var}(Y)$$

Proof:

$$\text{var}(X + Y) = E[(X + Y)^2] - E[X + Y]^2$$
$$= E[X^2 + 2XY + Y^2] - (E[X] + E[Y])^2$$
$$- (E[X]^2 + 2E[X]E[Y] + E[Y]^2)$$
$$= \text{var}(X) + \text{var}(Y)$$
Functions of Multiple Random Variables

Given random variables X_1, X_2, \ldots, X_N and a function $f : \mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R} \to \mathbb{R}$,

$$Z = f(X_1, X_2, \ldots, X_N)$$

is a new random variable.
Functions of Multiple Random Variables

- Given random variables X_1, X_2, \ldots, X_N and a function $f: \mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R} \to \mathbb{R}$,

$$Z = f(X_1, X_2, \ldots, X_N)$$

is a new random variable.

- **Linearity of Expectation:** If $Z = \sum_{i=1}^{N} X_i$,

$$E(Z) = E\left(\sum_{i=1}^{N} X_i\right) = \sum_{i=1}^{N} E(X_i)$$
Functions of Multiple Random Variables

- Given random variables X_1, X_2, \ldots, X_N and a function $f : \mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R} \rightarrow \mathbb{R}$,

$$Z = f(X_1, X_2, \ldots, X_N)$$

is a new random variable.

- **Linearity of Expectation:** If $Z = \sum_{i=1}^{N} X_i$,

$$E(Z) = E(\sum_{i=1}^{N} X_i) = \sum_{i=1}^{N} E(X_i)$$

- **Linearity of Variance:** If $Z = \sum_{i=1}^{N} X_i$,

$$\text{var}(Z) = \text{var}(\sum_{i=1}^{N} X_i) = \sum_{i=1}^{N} \text{var}(X_i)$$

if X_1, \ldots, X_N are pairwise independent, i.e., for all a, b

$$P(X_i = a, X_j = b) = P(X_i = a)P(X_j = b).$$
Example 1

Toss 12 fair six-sided dice. Let X be the number of “1”s and let Y be the number of “6”s. Are X and Y independent:

A: Yes
B: No
C: Can’t tell from the information given.
Example 1

Toss 12 fair six-sided dice. Let X be the number of “1”s and let Y be the number of “6”s. Are X and Y independent:

A: Yes
B: No
C: Can’t tell from the information given.

Answer is B since $P(X = 12, Y = 12) = 0 \neq P(X = 12)P(Y = 12)$.
Example 2

Toss 12 fair six-sided dice. Let X be the number of “1”s and let Y be the number of “6”s. What is the expected value of X?

A: 0
B: 1
C: 2
D: 3
E: 6
Example 2

Toss 12 fair six-sided dice. Let X be the number of “1”s and let Y be the number of “6”s. What is the expected value of X?

A: 0
B: 1
C: 2
D: 3
E: 6

Answer is C since each of the 12 throws has a 1/6 of being a “1”.
Example 3

Toss 12 fair six-sided dice. Let X be the number of “1”s and let Y be the number of “6”s. What is the expected value of $X + Y$?

A: 0
B: 2
C: 4
D: 6
E: 12

Answer is C because $E(X + Y) = E(X) + E(Y) = 2 + 2 = 4$.
Example 3

Toss 12 fair six-sided dice. Let X be the number of “1”s and let Y be the number of “6”s. What is the expected value of $X + Y$?

A: 0
B: 2
C: 4
D: 6
E: 12

Answer is C because $E(X + Y) = E(X) + E(Y) = 2 + 2 = 4$.
Outline

1. Review
2. Conditional PMFs
3. Expectation and Variance
4. More Markov and Chebyshev
Secrets of the Markov Bound

- Markov Bound: For any non-negative random variable, \(P(X \geq c) \leq E(X)/c \)
Secrets of the Markov Bound

- Markov Bound: For any non-negative random variable,

\[P(X \geq c) \leq \frac{E(X)}{c} \]

- For example, if \(E(X) = 10 \),

\[P(X \geq 15) \leq \frac{2}{3} \]
Secrets of the Markov Bound

- Markov Bound: For any non-negative random variable,
 \[P(X \geq c) \leq \frac{E(X)}{c} \]

- For example, if \(E(X) = 10 \),
 \[P(X \geq 15) \leq 2/3 \]

- Can we infer an interesting upper bound about a lower tail, e.g.,
 \[P(X \leq 5) \leq ?? \]
Secrets of the Markov Bound

- Markov Bound: For any non-negative random variable,

\[P(X \geq c) \leq E(X)/c \]

- For example, if \(E(X) = 10 \),

\[P(X \geq 15) \leq 2/3 \]

- Can we infer an interesting upper bound about a lower tail, e.g.,

\[P(X \leq 5) \leq ??? \]

- No! Consider a random variable of the form \(X = 10t \) with probability \(1/t \) and \(X = 0 \) with probability \(1 - 1/t \). Then, \(E(X) = 10 \) but

\[P(X \leq 5) = 1 - 1/t \]

can be arbitrarily close to 1.
We can do a bit better if we also know the maximum value of X.
We can do a bit better if we also know the maximum value of X. For example, suppose we know $0 \leq X \leq 15$ and $E(X) = 10$.
We can do a bit better if we also know the maximum value of X.

For example, suppose we know $0 \leq X \leq 15$ and $E(X) = 10$.

Let $Y = 15 - X$ and note that

$$E(Y) = 15 - E(X) = 5$$

and $Y \geq 0$. Then,

$$P(X \leq 5) = P(Y \geq 10)$$
We can do a bit better if we also know the maximum value of X.

For example, suppose we know $0 \leq X \leq 15$ and $E(X) = 10$.

Let $Y = 15 - X$ and note that

$$E(Y) = 15 - E(X) = 5$$

and $Y \geq 0$. Then,

$$P(X \leq 5) = P(Y \geq 10) \leq E(Y)/10 = 1/2$$
Secrets of the Chebyshev Bound

- Chebyshev Bound: $P(|X - E(X)| \geq c) \leq \frac{Var(X)}{c^2}$
Secrets of the Chebyshev Bound

- Chebyshev Bound: \(P(|X - E(X)| \geq c) \leq \frac{Var(X)}{c^2} \)
- The bound is useful when we are trying to bound the probability that \(X \) is much smaller or larger than its expectation.
Secrets of the Chebyshev Bound

- Chebyshev Bound: $P(|X - E(X)| \geq c) \leq \frac{Var(X)}{c^2}$
- The bound is useful when we are trying to bound the probability that X is much smaller or larger than its expectation.
- However, it also implies bounds on just one tail.
Secrets of the Chebyshev Bound

- Chebyshev Bound: \(P(|X - E(X)| \geq c) \leq \frac{Var(X)}{c^2} \)

- The bound is useful when we are trying to bound the probability that \(X \) is much smaller or larger than it’s expectation.

- However, it also implies bounds on just one tail.

- For example, if \(E(X) = 10 \) and \(var(X) = 2 \) then

\[
P(X \geq 15) = P(X \geq E(X) + 5) \leq P(|X - E(X)| \geq 5) \leq \frac{2}{25}
\]