Name: ___________________________ ID: ___________________________

Instructions:

• Answer the questions directly on the exam pages.

• Show all your work for each question. Giving more detail including comments and explanations can help with assignment of partial credit.

• If the answer to a question is a number, you may give your answer using arithmetic operations, such as addition, multiplication, and factorial (e.g., “$9 \times 35! + 2$” or “$0.5 \times 0.3/(0.2 \times 0.5 + 0.9 \times 0.1)$” is fine) unless the problem says otherwise.

• If you need extra space, use the back of a page.

• No books, notes, calculators or other electronic devices are allowed. Any cheating will result in a grade of 0.

• If you have questions during the exam, raise your hand.

• The formulas for some standard random variables can be found on the last page.

<table>
<thead>
<tr>
<th>Question</th>
<th>Value</th>
<th>Points Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8+2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8+2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8+2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>64+6</td>
<td></td>
</tr>
</tbody>
</table>
Question 1. (10 points) Indicate whether each of the following five statements is TRUE or FALSE. No justification is required.

1.1 (2 points): The probability of an event is always at most 1.
Answer: TRUE.

1.2 (2 points): For any three events $A, B,$ and C such that $P(A \cap B) > 0$ and $P(B \cap C) > 0$ then
$$P(A)P(B|A)P(C|A \cap B) = P(C)P(B|C)P(A|B \cap C) .$$
Answer: TRUE.

1.3 (2 points): If a Markov Chain is aperiodic and irreducible then there exists a distribution v^* over states such that the distribution over states at time t approaches v^* as t increases.
Answer: TRUE.

1.4 (2 points): Let X be a binomial random variable with parameters $N=100$ and $p=1/2$. Then
$$P(X = 10) < P(X = 90) .$$
Answer: FALSE. For those parameters, $P(X = 10) = P(X = 90)$

1.5 (2 points): For any random variables X and Y where $Y = X + 10$, then $\text{var}(X) = \text{var}(Y) + 10$.
Answer: FALSE. For any constant c, $\text{var}(X + c) = \text{var}(X)$.

Question 2. (10 points) Let X be a random variable where

$$P(X = 1) = 1/3 \quad P(X = 2) = 1/3 \quad P(X = 3) = 1/3.$$

Let $Y = (X - 1)(X - 2)$ be another random variable that depends on X. To get full marks you need to simplify your answers to a single number.

2.1 (3 points): Compute the following quantities:

$$E(X) = 1/3 + 2/3 + 3/3 = 2 \quad E(X^2) = 1/3 + 2^2/3 + 3^2/3 = 14/3 \quad \text{var}(X) = 14/3 - 2^2 = 2/3$$

2.2 (3 points): Compute the following quantities:

$$P(Y = 0) = P(\{X = 1\} \cup \{X = 2\}) = 2/3 \quad P(Y = 2) = P(X = 3) = 1/3 \quad \text{var}(Y) = 8/9$$

2.3 (2 points): Compute the following quantities:

$$E(X + Y) = E(X) + E(Y) = 2 + 2/3 = 8/3 \quad E\left(\frac{Y}{X}\right) = P(X = 3) \times \frac{2}{3} = 2/9$$

2.4 (2 points): Recall that the covariance of X and Y is $\text{cov}(X,Y) = E(XY) - E(X)E(Y)$. Compute the covariance of X and Y.

$$\text{cov}(X,Y) = P(X = 3) \times 3 \times 2 - 2 \times 2/3 = 2 - 4/3 = 2/3$$
Question 3. (10 points) In this problem we consider throwing balls into bins. Suppose there are five bins and each time we throw a ball it is equally likely to land in any of the five bins. In the next three questions, suppose we throw exactly five balls.

3.1 (2 points): What’s the probability that all the balls land in different bins?

Answer: $\frac{5}{5} \times \frac{4}{5} \times \frac{3}{5} \times \frac{2}{5} \times \frac{1}{5}$

3.2 (2 points): What’s the probability that all the balls land in the same bin?

Answer: $(\frac{1}{5})^4$

3.3 (2 points): What’s the probability that there is one bin with exactly three balls and one bin with exactly two balls?

Answer: Suppose the bins are labelled A, B, C, D, E and consider the sequence corresponding to where the balls landed, e.g., $AABBB$ would be the sequence if the first two balls landed in bin A and the next three landed in bin B. There are 5 choices for which bin contains 3 balls and 4 remaining choices for which bin contains 2 balls. Of the 5 balls that were thrown, there are $\binom{5}{3}$ choices for which 3 balls went in the bin that you’d designated to contain 3 balls. Hence there are $5 \times 4 \times \binom{5}{3} = 200$ sequences in which exactly 3 balls landed in one bin and 2 balls landed in another. Since, each sequence has probability $\frac{1}{5^5}$ the probability is $200 \times \frac{1}{5^5} = \frac{8}{125}$.

For the next two questions, suppose you throw balls until all the bins contain at least one ball and let X be the total number of balls that you throw. Let $B_1, B_2, B_3, B_4,$ and B_5 be the number of balls in the first, second, third, fourth, and fifth bin when you’ve thrown the X balls.

3.4 (2 points): What’s the expected value of X?

Answer: $\frac{5}{5} + \frac{5}{4} + \frac{5}{3} + \frac{5}{2} + \frac{5}{1}$

3.5 (2 points): What’s the value of $P(B_1 = 2 | X = 6)$?

Answer: If $X = 6$ then there is one bin with two balls and 4 bins with one ball. Since each ball is equally likely to land in each bin, there is a $\frac{1}{5}$ probability that the bin with two balls is the first bin.
Question 4. (10 points) Consider the Markov chain with two states \(\{s_1, s_2\} \) and transition matrix \(M \):

\[
M = \begin{pmatrix}
 1/2 & 1/2 \\
 1 & 0
\end{pmatrix}
\]

For example, if you are in state \(s_2 \) then the probability you would move to state \(s_1 \) is 1. Let \(X_t \) be the random variable corresponding to the state after \(t \) steps. The initial state is \(s_1 \), i.e., \(X_0 = s_1 \).

4.1 (2 points): Draw the transition diagram of the Markov chain and label each edge with the appropriate transition probability.

Answer:

![Transition Diagram](image)

4.2 (2 points): What’s the steady state distribution of the Markov chain?

Answer: Let \((a, 1 - a)\) be the steady state distribution. Then,

\[
(a, 1 - a) = (a, 1 - a) \begin{pmatrix}
 1/2 & 1/2 \\
 1 & 0
\end{pmatrix} = (1 - a/2, a/2)
\]

Therefore \(1 - a = a/2\) and so \(a = 2/3\). Hence the steady state distribution is \((2/3, 1/3)\).

4.3 (4 points): What’s the values of the following probabilities. In this question you need to fully simplify your answer to get full marks.

\[
\begin{align*}
P(X_1 = s_1) & = 1/2 \\
P(X_2 = s_1) & = 1/2^2 + 1/2 = 3/4 \\
P(X_3 = s_1) & = 1/2^3 + 2/2^2 = 5/8 \\
P(X_4 = s_1) & = 1/2^4 + 3/2^3 + 1/2^2 = 11/16
\end{align*}
\]

4.4 (2 points): Extra Credit: What’s the probability \(P(X_t = s_1)\) as a function of \(t\)? To get full marks your answer should be fully simplified. Hint: If the steady state distribution is \((\alpha, 1 - \alpha)\) for some \(0 < \alpha < 1\) consider what happens to \((\alpha + \gamma, 1 - \alpha - \gamma)\) for some arbitrary \(\gamma\).

Answer: Following the hint, first note that:

\[
(2/3 + \gamma, 1/3 - \gamma) \begin{pmatrix}
 1/2 & 1/2 \\
 1 & 0
\end{pmatrix} = (2/3 - \gamma/2, 1/3 + \gamma/2)
\]

Therefore, if the initial distribution is \((2/3 + 1/3, 1/3 - 1/3)\) then after \(t\) steps the distribution is \((2/3 + 1/3 \times (-1/2)^t, 1/3 - 1/3 \times (-1/2)^t)\) and so \(P(X_t = s_1) = 2/3 + 1/3 \times (-1/2)^t\).
Question 5. (10 points) Suppose you bought a light bulb. Let \(X \) be the random variable corresponding to the number of years that the light bulb lasts. You have two hypotheses for the distribution of \(X \) corresponding to how well the bulb was made:

\[
H_1 = \text{“} X \text{ is a geometric random variable with parameter } \frac{2}{3} \text{.”}
\]

\[
H_2 = \text{“} X \text{ is a geometric random variable with parameter } \frac{1}{2} \text{.”}
\]

Your priors for these hypotheses are \(P(H_1) = \frac{3}{5} \) and \(P(H_2) = \frac{2}{5} \).

5.1 (2 points): Let \(\{X = 1\} \) be the event the light bulb lasts for one year. What are the values:

\[
P(X = 1|H_1) = \frac{2}{3} \quad P(X = 1|H_2) = \frac{1}{2}
\]

\[
P(X = 3|H_1) = \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} = \frac{2}{27} \quad P(X = 3|H_2) = \frac{1}{8}
\]

5.2 (2 points): If event \(\{X = 1\} \) is observed, which is the MAP hypothesis? Show your working.

Answer: The MAP hypothesis is \(H_1 \) because:

\[
P(H_1|X = 1) = P(X = 1|H_1)P(H_1)/P(X = 1) = \frac{2}{3} \times \frac{3}{5}/\frac{3}{5} = \frac{2}{5}/P(X = 1)
\]

\[
P(H_2|X = 1) = P(X = 1|H_2)P(H_2)/P(X = 1) = \frac{1}{2} \times \frac{2}{5}/P(X = 1) = \frac{1}{5}/P(X = 1)
\]

5.3 (2 points): If event \(\{X = 3\} \) is observed, which is the MAP hypothesis? Show your working.

Answer: The MAP hypothesis is \(H_2 \) because:

\[
P(H_1|X = 3) = P(X = 3|H_1)P(H_1)/P(X = 3) = \frac{2}{27} \times \frac{3}{5}/\frac{3}{5} = \frac{2}{45}/P(X = 3)
\]

\[
P(H_2|X = 3) = P(X = 3|H_2)P(H_2)/P(X = 3) = \frac{1}{8} \times \frac{2}{5}/P(X = 3) = \frac{1}{20}/P(X = 3)
\]

5.4 (2 points): What is the value of \(P(X = i) \) as a function of \(i \) based on the priors above?

Answer:

\[
P(X = i) = P(X = i|H_1)P(H_1) + P(X = i|H_2)P(H_2) = \left(\frac{1}{3}\right)^{i-1} \times \frac{2}{3} \times \frac{3}{5} + \left(\frac{1}{2}\right)^i \times \frac{2}{5}
\]

5.5 (2 points): What is the value of \(E(X) \)? To get full marks your answer should be fully simplified.

Answer: \(E(X) = \sum_{i=1}^{\infty} i \times \left(\frac{1}{3}\right)^{i-1} \times \frac{2}{3} \times \frac{3}{5} + \left(\frac{1}{2}\right)^i \times \frac{2}{5} \). Observe that this is \(\frac{3}{5} \) times the expectation of a geometric random variable with parameter \(\frac{2}{3} \) plus \(\frac{2}{5} \) times the expectation of a geometric random variable with parameter \(\frac{1}{2} \). Hence it equals \(\frac{3}{5} \times \frac{3}{2} + \frac{2}{5} \times 2 = \frac{17}{10} \).
Question 6. (10 points) Good news! The computer science vending machine has been updated to include some healthy snacks and Mexican favorites. The available options are:

\[\Omega = \{ \text{Apple, Banana, Chips, Donut, Empanada} \} \]

The probabilities of picking these options are:

\[P(\text{Apple}) = \frac{4}{10} \quad P(\text{Banana}) = \frac{2}{10} \quad P(\text{Chips}) = \frac{2}{10} \quad P(\text{Donut}) = \frac{1}{10} \quad P(\text{Empanada}) = \frac{1}{10} . \]

6.1 (2 points): What is the probability of eating a fruit? Hint: An empanada is not a fruit.

Answer: \(P(\text{a fruit}) = P(\text{Apple}) + P(\text{Banana}) = \frac{3}{5} \).

6.2 (2 points): Suppose that to pick one of the items you enter a binary sequence of length \(k \). What is the minimum value of \(k \) that can be used such that all items have a different binary sequence.

Answer: There are 8 sequences of length \(k = 3 \) and only 4 sequences of length \(k = 2 \). Hence \(k = 3 \) is the smallest value such that each item has a different binary sequence.

In the rest of this question, the sequences are of different lengths and are chosen according to the following tree, e.g., the sequence for “Banana” is 0 and the sequence for “Empanada” is 111.

![Tree Diagram]

6.3 (2 points): What are the sequences for:

- “Chips” = 100
- “Apple” = 101
- “Donut” = 110

6.4 (2 points): If I pick an item according to the above probabilities, let \(X \) be the length of the corresponding sequence. What is the expected value of \(X \)?

Answer: \[E(X) = P(\text{Banana}) \times 1 + (1 - P(\text{Banana})) \times 3 = \frac{2}{10} + \frac{8}{10} \times 3 = \frac{26}{10} = 2.6. \]

6.5 (2 points): Extra Credit: Find a tree in which the expected length of the sequence is smaller. What is the expected length in this case.
Answer: Consider the following encoding tree:

Then the expected length of a sequence is

\[
\frac{4}{10} \times 1 + \frac{2}{10} \times 2 + \frac{2}{10} \times 3 + \frac{1}{10} \times 4 + \frac{1}{10} \times 4 = \frac{11}{5} = 2.2
\]
Question 7. (10 points) It’s the day of the big game and outside the Mullins center there are two competing t-shirt vendors, Alice and Bob. They each paid $100 for a license to sell t-shirts and are each now deciding whether to sell their t-shirts for $10 or $20.

- If both sell their t-shirts at $10 then each will sell 10 t-shirts.
- If both sell their t-shirts at $20 then each will sell 5 t-shirts.
- If Alice sells at $10 and Bob sells at $20 then Alice sells 20 t-shirts and Bob sells none.
- If Bob sells at $10 and Alice sells at $20 then Bob sells 20 t-shirts and Alice sells none.

You may assume that the t-shirts were effectively free to make and so the license is the only cost.

7.1 (2 points): For each combination of strategies, what is Alice’s profit? Remember to include the cost of the license and so the profit could be negative.

- Alice’s profit if both sell at $10 = 10 \times 10 - 100 = 0
- Alice’s profit if both sell at $20 = 5 \times 20 - 100 = 0
- Alice’s profit if Alice sells at $10 and Bob sells at $20 = 20 \times 10 - 100 = 100
- Alice’s profit if Alice sells at $20 and Bob sells at $10 = -100

7.2 (1 points): Is this a zero-sum game?

Answer: Yes.

7.3 (2 points): Suppose Alice sets her price at $10 with probability p. Bob sets his price at $10 with probability q. As a function of p and q, what is the expected profit for Alice?

Answer: \(pq \times 0 + (1 - p)(1 - q) \times 0 + p(1 - q) \times 100 - (1 - p)q \times 100 = 100p - 100q. \)

7.4 (1 points): What value should Alice choose for p if q = 1/2.

Answer: If q = 1/2, Alice’s expected profit is 100p − 50 and this is increase by increasing p. Hence Alice would set p = 1.

7.5 (2 points): Find a Nash equilibrium for the game. (You just need to find one.)

Answer: If both players set their price to be $10 then neither has an incentive to change their strategy. Hence both players setting their price to be $10 is a Nash equilibrium.
7.6 (2 points): **Extra Credit:** Alice is considering bribing Bob to close his t-shirt stand so that she has no competition. Ignoring anti-competition laws and moral issues, what’s the maximum she should pay Bob? What assumptions are you making in your answer?

Answer: If Bob doesn’t close assume that Alice makes $0 profit but if Bob does close then Alice can make $100 (either by selling 20 t-shirts and $10 or selling 10 t-shirts at $20). Hence, Alice should be prepared to pay up to $100. This is the maximum she should pay Bob. However note that from Bob’s point of view, he’s making $0 profit if both stay open. Hence, if he’s only paid one cent he has an incentive to close.
Standard Random Variables

- **Bernoulli Random Variable** with parameter \(p \in [0, 1] \):

 \[
P(X = k) = \begin{cases}
 1 - p & \text{if } k = 0 \\
 p & \text{if } k = 1
\end{cases}, \quad E(X) = p, \quad \text{var}(X) = p(1 - p)
\]

- **Binomial Random Variable** with parameters \(p \in [0, 1] \) and \(N \in \{1, 2, 3, \ldots\} \):

 For \(k \in \{0, 1, 2, \ldots, N\} \) :

 \[
P(X = k) = \binom{N}{k} p^k (1-p)^{N-k}, \quad E(X) = Np, \quad \text{var}(X) = Np(1-p)
\]

- **Geometric Random Variable** with parameter \(p \in [0, 1] \):

 For \(k \in \{1, 2, 3, \ldots\} \) :

 \[
P(X = k) = (1-p)^{k-1} \cdot p, \quad E(X) = \frac{1}{p}, \quad \text{var}(X) = (1-p)/p^2
\]

- **Poisson Random Variable** with parameter \(\lambda > 0 \):

 For \(k \in \{0, 1, 2, \ldots\} \) :

 \[
P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad E(X) = \lambda, \quad \text{var}(X) = \lambda
\]

- **Discrete Uniform Random Variable** with parameters \(a, b \in \mathbb{Z} \) and \(a < b \):

 For \(k \in \{a, a+1, \ldots, b\} \) :

 \[
P(X = k) = \frac{1}{b - a + 1}, \quad E(X) = \frac{a + b}{2}, \quad \text{var}(X) = \frac{(b - a + 1)^2 - 1}{12}
\]

Bayes Formula

- If \(A_1, \ldots, A_n \) partition \(\Omega \) then for any event \(B \):

 \[
P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^{n} P(B|A_j)P(A_j)}
\]