Instructions:

• Answer the questions directly on the exam pages.
• Show all your work for each question. Giving more detail including comments and explanations can help with assignment of partial credit.
• If the answer to a question is a number, you may give your answer using arithmetic operations, such as addition, multiplication, and factorial (e.g., “9 \times 35! + 2” or “0.5 \times 0.3/(0.2 \times 0.5 + 0.9 \times 0.1)” is fine).
• If you need extra space, use the back of a page.
• No books, notes, calculators or other electronic devices are allowed. Any cheating will result in a grade of 0.
• If you have questions during the exam, raise your hand.
• The formulas for some standard random variables can be found on the last page.

<table>
<thead>
<tr>
<th>Question</th>
<th>Value</th>
<th>Points Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6 (Extra Credit)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>
Question 1. (10 points) Indicate whether each of the following statements is TRUE or FALSE. No justification is required.

1.1 (2 points): If X is a random variable, then the events $\{X = 1\}$ and $\{X = 2\}$ are disjoint.

Answer: True.

1.2 (2 points): If X is a Bernoulli random variable then $E(X) = P(X = 1)$.

Answer: True.

1.3 (2 points): If X is a Binomial random variable with parameters $N = 10$ and $p = 1/2$ then

$$P(X = 1) = P(X = 9).$$

Answer: True.

1.4 (2 points): Two random variables with the same expectation, have the same variance.

Answer: False.

1.5 (2 points): For any random variable X, $P(X > E(X)) = P(X < E(X))$.

Answer: False. A counter-example would be $P(X = -4) = 1/4$ and $P(X = 4/3) = 3/4$. Hence, $E(X) = 0$ but $P(X > E(X)) = 3/4 \neq 1/4 = P(X < E(X))$.

Question 2. * (10 points) * Suppose that \(X \) is a random variable that takes values in the set \{1, 2, 3, 4, 5\} and \(P(X = 1) = P(X = 2) = P(X = 3) = P(X = 4) = P(X = 5) = 1/5 \).

2.1 (2 points): * What is the value of \(E(X) \)?

Answer: \(E(X) = 1 \times 1/5 + 2 \times 1/5 + 3 \times 1/5 + 4 \times 1/5 + 5 \times 1/5 = 3 \).

2.2 (2 points): * What is the value of \(E(X^2) \)?

Answer: \(E(X^2) = 1^2 \times 1/5 + 2^2 \times 1/5 + 3^2 \times 1/5 + 4^2 \times 1/5 + 5^2 \times 1/5 = 55/5 = 11 \).

2.3 (2 points): * What is the value of \(\text{var}(X) \)?

Answer: \(\text{var}(X) = E(X^2) - (E(X))^2 = 11 - 3^2 = 2 \).

2.4 (2 points): * What is the exact value of \(P(X \geq 4) \)?

Answer: \(P(X \geq 4) = P(X + 4) + P(X + 5) = 2/5 \).

2.5 (2 points): * What is the exact value of \(P(|X - E(X)| \geq 2) \)?

Answer: \(P(|X - E(X)| \geq 2) = P(X = 1) + P(X = 5) = 2/5 \).
Question 3. (11 points) During a lecture, an instructor picks a student at random and asks if they know a certain definition from the course. Define the following two random variables X and Y. X takes the value 0 or 1 where $X = 1$ if the student knows the answer and $X = 0$ otherwise. Y is the number of the student’s discussion section, i.e., Y is either 1, 2, or 3. The joint probabilities are given in the following table:

<table>
<thead>
<tr>
<th></th>
<th>$Y = 1$</th>
<th>$Y = 2$</th>
<th>$Y = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = 0$</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>$X = 1$</td>
<td>0.05</td>
<td>0.05</td>
<td>0.3</td>
</tr>
</tbody>
</table>

So, for example $P(X = 0, Y = 1) = 0.2$ and $P(X = 1, Y = 1) = 0.05$.

3.1 (1 points): What’s the value of $P(X = 1, Y = 3)$?

3.2 (2 points): Enter the values for the following probabilities:

$P(X = 0) = 0.6$, $P(X = 1) = 0.4$, $P(Y = 1) = 0.25$, $P(Y = 2) = 0.25$, $P(Y = 3) = 0.5$

3.3 (2 points): What is the value of $P(X = 0|Y = 1)$ and $P(X = 1|Y = 1)$?

Answer: $P(X = 0|Y = 1) = P(X = 0, Y = 1)/P(Y = 1) = 0.2/0.25 = 0.8$ and $P(X = 1|Y = 1) = P(X = 1, Y = 1)/P(Y = 1) = 0.05/0.25 = 0.2$.

3.4 (2 points): Are X and Y independent? Justify your answer.

Answer: No. If they were independent then $P(X = 0, Y = 1) = 0.2$ should equal $P(X = 0)P(Y = 1) = 0.6 \times 0.25 = 0.15$ which isn’t true.

3.5 (2 points): What’s the value of the expectation of X and the expectation of Y?

Answer: $E(X) = 0 \times 0.6 + 1 \times 0.4 = 0.4$ and $E(Y) = 1 \times 0.25 + 2 \times 0.25 + 3 \times 0.5 = 2.25$.

3.6 (2 points): What’s the value of the expectation of XY and $cov(X,Y) = E(XY) − E(X)E(Y)$?

Answer: $E(XY) = (0 \times 1) \times 0.2 + (0 \times 2) \times 0.2 + (0 \times 3) \times 0.2 + (1 \times 1) \times 0.05 + (1 \times 2) \times 0.05 + (1 \times 3) \times 0.3 = 0.15 + 0.9 = 1.05$. Therefore, $cov(X,Y) = 1.05 - 0.4 \times 2.25 = 1.05 - 0.9 = 0.15$.

4
Question 4. (12 points) Consider an experiment where we toss a fair coin 100 times. Let X be the number of tails that are observed.

4.1 (3 points): What is the expected value, variance, and standard deviation of X?

\[
E(X) = Np = 100 \times 0.5 = 50 \quad \text{var}(X) = Np(1-p) = 100 \times 0.5 \times 0.5 = 25 \quad \sigma(X) = \sqrt{\text{var}(X)} = 5
\]

4.2 (2 points): Use the Chebyshev bound to find an upper bound on the value of $P(|X - 50| \geq 10)$.

Answer:

\[
P(|X - 50| \geq 10) = P(|X - E(X)| \geq 10) \leq \frac{\text{var}(X)}{10^2} = \frac{25}{100} = 1/4
\]

4.3 (2 points): Use the Markov bound to find an upper bound on the value of $P(X \geq 60)$.

Answer:

\[
P(X \geq 60) \leq \frac{E(X)}{60} = \frac{50}{60} = 5/6.
\]

4.4 (3 points): Let Y be the number of heads that are observed and let $Z = X + Y$. What is the expected value and variance of Y and Z?

\[
E(Y) = 100 \times 0.5 = 50 \quad \text{var}(Y) = 100 \times 0.5 \times 0.5 = 25
\]

\[
E(Z) = 50 + 50 \quad \text{by linearity of expectation} \quad \text{var}(Z) = 0 \quad \text{because } Z \text{ is constant.}
\]

4.5 (2 points): Are Y and Z independent? Justify your answer.

Answer: Y and Z are independent because Z is constant.
Question 5. (12 points) The students of CMPSCI 245 “Reasoning about Certainty” are taking a midterm. The midterm lasts for a maximum of 120 minutes but if we pick a random student, the expected time taken by the student is only 60 minutes. Let T be the time taken by the student.

5.1 (2 points): What’s the best upper bound you can show for the value of $P(T \geq 90)$?

Answer: $P(T \geq 90) \leq E(X)/90 = 60/90 = 2/3$.

5.2 (2 points): What’s the best lower bound you can show for the value of $P(T < 90)$?

Answer: $P(T < 90) = 1 - P(T \geq 90) \geq 1 - 2/3 = 1/3$.

5.3 (2 points): What’s the largest value $\text{var}(T)$ can take and what’s the corresponding PMF?

Answer: Let $P(T = 0) = 1/2$ and $P(T = 120) = 1/2$, then $\text{var}(T) = 60^2 = 3600$.

5.4 (2 points): What’s the smallest value $\text{var}(T)$ can take and what’s the corresponding PMF?

Answer: Let $P(T = 60) = 1$ then $\text{var}(T) = 0$.

5.5 (1 points): If there are 50 students taking CMPSCI 245 and the average time taken for the exam is 60 minutes, what’s the maximum number of students who took the full 120 minutes?

Answer: Let x_1, x_2, \ldots, x_{50} be the times taken by the students. Let t be the number of students who took the full 120 minutes. Hence, $60 = \frac{x_1 + x_2 + x_3 + \ldots + x_{50}}{50} \leq \frac{120t}{50}$ and therefore $t \leq 25$.

5.6 (3 points): What’s the best upper bound you can show for the value of $P(T \leq 10)$? **Hint:** Consider a new random variable $R = 120 - T$.

Answer: Note that R is non-negative and $E(R) = 120 - E(T) = 60$. Hence, $P(T \leq 10) = P(R \geq 110) \leq 60/110 = 6/11$.

Question 6. (5 points) Extra Credit: Suppose X is a geometric random variable with parameter p. Hint: You may want to use the formula $1 + x + x^2 + \ldots = 1/(1 - x)$ for $0 < x < 1$.

6.1 (2 points): What’s the probability that X takes an odd value?

Answer:

$$P(X \in \{1, 3, 5, 7, \ldots\}) = p + (1-p)^2p + (1-p)^4p + (1-p)^6p + \ldots$$
$$= p(1 + (1-p)^2 + (1-p)^4 + (1-p)^6 + \ldots)$$
$$= \frac{1}{1-(1-p)^2} = \frac{1}{2-p}$$

6.2 (3 points): Let $p = 1/2$. Find a function $f : \mathbb{R} \rightarrow \{0, 1\}$ such that $Y = f(X)$ satisfies $E(Y) = 1/7$. Prove your result.

Answer: Let $f(x) = 1$ if $x = 3, 6, 9, 12, \ldots$ and $f(x) = 0$ otherwise. Then

$$P(f(X) = 1) = P(X \in \{3, 6, 9, 12, \ldots\})$$
$$= (1-p)^2p + (1-p)^5p + (1-p)^8p + \ldots$$
$$= 1/8 + 1/8^2 + 1/8^3 + \ldots$$
$$= (1 + 1/8 + 1/8^2 + 1/8^3 + \ldots)/8$$
$$= \frac{1}{8-1} = 1/7$$

and so $E(f(X)) = P(f(X) = 1) = 1/7$ as required.
Standard Random Variables

- Bernoulli Random Variable with parameter \(p \in [0, 1] \):
 \[
P(X = k) = \begin{cases}
 1 - p & \text{if } k = 0 \\
 p & \text{if } k = 1
\end{cases}, \quad E(X) = p \quad , \quad \text{var}(X) = p(1 - p)
\]

- Binomial Random Variable with parameters \(p \in [0, 1] \) and \(N \in \{1, 2, 3, \ldots\} \):
 For \(k \in \{0, 1, 2, \ldots, N\} \) : \(P(X = k) = \binom{N}{k} p^k (1-p)^{N-k} \), \(E(X) = Np \), \(\text{var}(X) = Np(1-p) \)

- Geometric Random Variable with parameter \(p \in [0, 1] \):
 For \(k \in \{1, 2, 3, \ldots\} \) : \(P(X = k) = (1 - p)^{k-1} \cdot p \), \(E(X) = \frac{1}{p} \), \(\text{var}(X) = (1 - p)/p^2 \)

- Poisson Random Variable with parameter \(\lambda > 0 \):
 For \(k \in \{0, 1, 2, \ldots\} \) : \(P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!} \), \(E(X) = \lambda \), \(\text{var}(X) = \lambda \)

- Discrete Uniform Random Variable with parameters \(a, b \in \mathbb{Z} \) and \(a < b \):
 For \(k \in \{a, a+1, \ldots b\} \) : \(P(X = k) = \frac{1}{b-a+1} \), \(E(X) = \frac{a+b}{2} \), \(\text{var}(X) = \frac{(b - a + 1)^2 - 1}{12} \)