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Abstract

Text clustering typically involves cluster-
ing in a high dimensional space, which
appears difficult with regard to virtually
all practical settings. In addition, given a
particular clustering result it is typically
very hard to come up with a good ex-
planation of why the text clusters have
been constructed the way they are. In this
paper, we propose a new approach for
applying background knowledge during
preprocessing in order to improve clus-
tering results and allow for selection be-
tween results. We built various views
basing our selection of text features on
a heterarchy of concepts. Based on these
aggregations, we compute multiple clus-
tering results using K-Means. The results
may be distinguished and explained by
the corresponding selection of concepts
in the ontology. Our results compare
favourably with a sophisticated baseline
preprocessing strategy.

1 Introduction
With the abundance of text documents through
World Wide Web and corporate document man-
agement systems, the dynamic partitioning of texts
into previously unseen categories ranks top on the
priority list for all business intelligence systems.
However, current text clustering approaches still
suffer from major problems that greatly limit their
practical applicability.

First, text clustering is mostly seen as anob-
jectivemethod, which delivers one clearly defined
result, which needs to be “optimal” in some way.
This, however, runs contrary to the fact that differ-
ent people have quite different needs with regard to
clustering of texts, because they may view the same
documents from completely different perspectives
(e.g., a business view vs. a technical view; also cf.
[9]). Thus, what is needed aresubjectivecriteria

that allow for a diversity of views from which to
look at the clustering task.

Second, text clustering typically is a clustering
task working in ahigh-dimensional spacewhere
each word is seen as a potential attribute for a text.
Empirical and mathematical analysis, however, has
shown that — in addition to computational in-
effiencies — clustering in high-dimensional spaces
is very difficult, because every data point tends to
have the same distance from all other data points
[2].

Third, text clusteringper seis often rather use-
less, unless it is combined with anexplanationof
why particular texts were categorized into a partic-
ular cluster. I.e. one output desired from cluster-
ing in practical settings is the explanation of why
a particular cluster result was produced rather than
the result itself. A common method for producing
explanations is the learning of rules based on the
cluster results. Again, however, this approach suf-
fers from the high number of features chosen for
computing clusters.

Though there are of course different approaches
for clustering, simple ones like K-Means or sophis-
ticated ones (like[3]), based on the consideration
just mentioned we found that virtually all algo-
rithms working on large feature vectors will even-
tually face the same principal problems without re-
ally approaching the matters ofsubjectivityandex-
plainability. Hence, our aim was to consider dif-
ferent views onto the data, i.e. different aggrega-
tion levels at which text documents may be repre-
sented and from which clustering results are even-
tually derived.

The principal idea of our approach,COSA(Con-
cept Selection and Aggregation), is to use a sim-
ple, core ontology for restricting the set of relevant
document features and for automatically propos-
ing good aggregations. The aggregations are then
exploited by the standard clustering algorithm K-
Means. More precisely, we have compiled a heter-
archy of concepts1 that is used by a heuristic search

1A heterarchy of concepts is a kind of “taxonomy”



algorithm to automatically construct a set of views.
The basic criteria of COSA include the computa-
tion of support for particular concepts and the top-
down navigation of the heterarchy in a greedy man-
ner. Based on COSA, a set of clustering results is
produced without interaction by a human user of
the system. The user may then decide to prefer the
one over the other clustering result based on the
actual concepts used for clustering as well as on
standard quality measures (such as the silhouette
measure[8]).

In this paper, we briefly formalize our notion
of ontology (Section 2). We continue describing
COSA as well as two baseline preprocessing strate-
gies (Section 3). These three are compared in our
experimental evaluation (Section 4), before we re-
late to other work and conclude.

2 Heterarchy and Core Ontology
A core ontology in our framework is defined by:

Definition 1 (Core Ontology) A core ontology is
a sign systemO := (L;F ; C;H;ROOT), which
consists of

� A lexicon: The lexiconL contains a set of
terms.

� A set ofconcepts C.

� Thereference function F withF : 2L 7! 2C .
F links sets of termsfLig � L to the set of
concepts they refer to. In general, one term
may refer to several concepts and one concept
may be refered to by several terms (e.g., “boat
hire” and “boat rental” may refer to the con-
ceptBOATHIRE) . The inverse ofF isF�1.

� A heterarchy H: Concepts are taxonomically
related by the directed, acyclic, transi-
tive, reflexive relationH, (H � C � C).
H(HOTEL;ACCOMODATION) means that
HOTEL is a subconcept ofACCOMODATION.

� A top conceptROOT 2 C. For all C 2 C it
holds:H(C;ROOT).

The core ontology defines the background
knowledge used for preprocessing and selection of
relevant views (i.e. aggregations) onto the set of
texts. The formulation we have used here roughly
corresponds to the basic structures used in the fa-
mous WordNet[11], but the actual ontology we
have used is domain-specific rather than general as
WordNet. In order to easily build new ontologies
we have developed a rich framework, which in-
cludes support for semi-automatic constructing of
ontologies from various input (cf.[10]).

where each term may have multiple parents and — of
course — multiple children.

3 Document Preprocessing

Documents may be represented by a wide range of
different feature descriptions. The most straight-
forward description of documents relies on term
vectors. A term vector for one document speci-
fies how often each term from the document set oc-
curs in that document. The immediate drawback of
this basic approach for document preprocessing for
clustering is the size of the feature vectors. In our
example evaluation, the feature vectors computed
by this method were of size 46,947, which made
clustering inefficient and difficult in principle, as
described above.

While for supervised learning tasks there exist
quite a number of evaluations of how document
preprocessing strategies perform (cf., e.g.,[4]),
there are only few corresponding results for unsu-
pervised knowledge discovery tasks like document
clustering (cf. Section 5).

To evaluate our approach, which takes advantage
of the background knowledge we provide with our
core ontology, we did of course compare against
that basic approach for document preprocessing
(referred to bySimple Vector Representationor
SiVeRin the following). We were aware that due
to the problems with clustering in high dimensional
space, SiVeR would be handicapped from the very
beginning. In order to perform a more competi-
tive comparison, we have decided to include an-
other preprocessing approach in the evaluation.

Hence, in the following we develop,(i), a pre-
processing strategy (cf. Section 3.1) based on term
vectors reduced to terms considered “important”
by information retrieval measures,viz. a pre-
processing strategy based on term selection;(ii) ,
a more comprehensive approach using the back-
ground knowledge available in the ontology. In
particular, we apply techniques from natural lan-
guage processing to map terms to concepts (cf. Sec-
tion 3.2) and select between aggregations navigat-
ing top-down in the heterarchy.

3.1 Preprocessing Strategy: Term
Selection (TES)

Term selection, the second approach we use here
for preprocessing, is based on the feature vectors
from SiVeR, but focuses on few terms, hence, it
produces a low dimensional representation. Selec-
tion of terms is based on the information retrieval
measure tf/idf:

Definition 2 (tf/idf) Let tf(i; j) be the term fre-
quency of termj in a documentdi 2 D; i =
1; : : : ; N . Let df (j) be the document frequency of
term j that counts in how many documents termj
appears. Then tf/idf (term frequency / inverted doc-
ument frequency of termj in documenti is defined



by:

tfidf(i; j) = tf(i; j) � log

�
N

df(j)

�
: (1)

Tf/idf weighs the frequency of a term in a doc-
ument with a factor that discounts its importance
when it appears in almost all documents. There-
fore terms that appear too rarely or too frequently
are ranked lower than terms that hold the balance
and, hence, are expected to be better able to con-
tribute to clustering results.

For TES, we produce the list of all terms con-
tained in one of the documents from the corpusD
except of terms that appear in a standard list of
stopwords. Then, TES selects thed best termsj
that maximizeW (j),

W (j) :=
X

i:=1:::N

tfidf(i; j); (2)

and produces ad dimensional vector for document
di containing the tf/idf values, tfidf(i; j), for thed
best terms.

3.2 Preprocessing Strategy: Concept
Selection and Aggregation (COSA)

Our approach for preprocessing, concept selec-
tion and aggregation (COSA), involves two stages.
First, COSA maps terms onto concepts using a
shallow and efficient natural language processing
system. Second, COSA uses the concept heterar-
chy to propose good aggregations for subsequent
clustering.

Mapping terms to concepts
The mapping of terms to concepts relies on some
modules of SMES (Saarbr¨ucken Message Extrac-
tion System), a shallow text processor for German
(cf. [12]). SMES components exploited by COSA
comprise atokenizerbased on regular expressions
and alexical analysiscomponent including aword
and adomain lexicon.

The tokenizer scans the text in order to identify
boundaries of words and complex expressions like
“$20.00” or “United States of America”, and to
expand abbreviations. The word lexicon contains
more than 120,000 stem entries. Lexical analysis
uses the word lexicon,(i), to perform morpholog-
ical analysis of terms, i. e. the identification of the
canonical common stem of a set of related word
forms and the analysis of compounds and,(ii) , to
recognize named entities. Thus,L as described in
Definition 1 is a set defined by the tokenizer, the
word lexicon and the analysis procedures of the
lexical analysis component. The domain lexicon
contains the mappings from word stems to con-
cepts, i.e. together with the other modules it rep-
resents the functionF as defined in Definition 1.
By this way, e.g., the expression “Hotel Schwarzer
Adler” is associated with the concept HOTEL.

Based on this input, each document is repre-
sented by a vector of concepts, each entry spec-
ifying the frequency that a concept occurs in the
document.

A heuristic for generating good aggregations
Because synonyms are mapped to common con-
cepts and because in all realistic document sets
there are more terms than concepts, the sizes of
concept vectors representing documents are al-
ready considerably smaller than the sizes of term
vectors produced by SiVeR. Still, realistic settings
require at least some hundreds or thousands of con-
cepts, which yields simply too many dimensions
for practical clustering.

Therefore, we have looked for ways to heuris-
tically reduce the number of features and, thus,
the number of dimensions of the clustering space.
The principal idea of our algorithmGenerate-
ConceptViews is to navigate the heterarchy top-
down and build views from the concept parts that
achieve good overall support (cf. Algorithm 1 be-
low).

The variableAgenda is defined to describe
the current features used in concept vectors,
hence the current view onto the document
set. For instance, the current agenda could be
[ACCOMODATION, VACATION , SIGHT-SEEING]. A
view is altered, by taking the frontmost, i.e. the
concept with the most support, from the agenda
(lines 4 and 5) and branching — if it is not a
leaf concept — into its subconcepts (line 10).
In order to restrict branching, we only perform
binary splits at a time. Continuing the example
just given, the first feature for the input space
is described by the conceptACCOMODATION
and whenACCOMODATION has the subconcepts
[HOTEL; GUEST-HOUSE; YOUTH-HOSTEL], we
will select the subconcept that has the highest
support of these three (line 11), e.g.HOTEL, and
aggregate the other two subconcepts into one fea-
ture, viz. [GUEST-HOUSE, YOUTH-HOSTEL] (line
12). The list[GUEST-HOUSE; YOUTH-HOSTEL] is
then treated almost like a proper, atomic concept.
HOTEL and [GUEST-HOUSE; YOUTH-HOSTEL] are
both inserted intoAgenda ordering all elements
according to their support (lines 13-14). The
result might be, e.g.,[VACATION ; [GUEST-HOUSE;
YOUTH-HOSTEL]; HOTEL; SIGHT-SEEING].

Thereby, direct supportof a conceptC in a
documentdi is defined by the concept frequency
cf(i; C) that one of the termsF�1(fCg) appears
in di. Complete support includes also considera-
tion of all the subconcepts:

Support(i; C) :=
X

B2fBjH(B;C)g

cf(i; B); (3)

and



Support(C) :=
X

i:=1:::N

Support(i; C): (4)

If the agenda has lengthd + 1 due to the last
binary split of one of its elements,agenda is short-
ened by the element with least support (line 15).
If the agenda has the correct number of features,
it is added to the output set describing a selection
of concepts, hence an aggregation that represents
documents byd-dimensional concept vectors (line
17).

Thus, Algorithm 1 zooms into those concepts
that exhibit strongest support, while taking into ac-
count the support of subconcepts. Finally, it pro-
poses sets of views for clustering that imply ad-
dimensional representation of documents by con-
cept vectors. Each entry of a vector specifies how
often the concept (or its subconcepts) appears in the
corresponding document.

3.3 A note on absolute vs. logarithmic
values

The document representations described so far
used absolute frequency values for concepts or
terms (possibly weighted by idf). Considering that
the occurrence of terms forms a hyperbolic distri-
bution and, hence, most terms appear only rarely,
using the logarithmic valuelog(x + 1) instead of
the absolute valuex itself seemed reasonable to
improve clustering results. Indeed, for all prepro-
cessing strategies given here, we found that results
were only improved compared to absolute values.
Hence, all results presented subsequently assume
the logarithmic representation of term or concept
frequencies.

4 Evaluation
This section describes the evaluation of applying
K-Means to the preprocessing strategies SiVeR,
TES, and COSA introduced above.

Setting
We have performed all evaluations on a document
set from the tourism domain. For this purpose, we
have manually modeled an ontologyO consisting
of a set of conceptsC (j C j = 1030), and a word
lexicon consisting of 1950 stem entries (the cover-
age of different termsL by SMES is much larger!).
The heterarchyH has an average depth of4:6, the
longest uni-directed path from root to leaf is of
length9.

Our document corpusD has been crawled from
a WWW provider for tourist information (URL:
http://www.all-in-all.de) consisting now of 2234
HTML documents with a total sum of over 16 mil-
lion words. The documents in this corpus describe

actual objects, like locations, accomodations, facil-
ities of accomodations, administrative information,
and cultural events.

Silhouette Coefficient
Our aim was to compare SiVeR, TES, and COSA
for a wide range of parameter settings. In order to
be rather independent from the number of features
used for clustering and the number of clusters pro-
duced as result, our main comparisons refer to the
silhouette coefficient (cf.[8]):

Definition 3 (Silhouette Coefficient) Let DM =
fD1; : : : ; Dkg describe a clustering result, i.e. it is
an exhaustive partitioning of the set of documents
D. The distance of a documentd 2 D to a cluster
Di 2 DM is given as

dist(d;Di) =

P
p2Di

dist(d; p)

j Di j
: (5)

Let further bea(d;DM ) = dist(d;Dl) the dis-
tance of documentd to its clusterDl (d 2 Dl),
andb(d;DM ) = minDi2DM ;d=2Di

dist(d;Di) the
distance of documentd to the nearest neighbouring
cluster.

Thesilhouette s(d;DM ) of a documentd 2 D
is then defined as:

s(d;DM ) =
b(d;DM )� a(d;DM )

maxfa(d;DM ); b(d;DM )g
: (6)

Thesilhouette coefficient SC(DM ) as:

SC(DM ) =

P
p2D s(p;DM )

j D j
: (7)

The silhouette coefficient is a measure for the
clustering quality, that is rather independent from
the number of clusters,k. Experiences, such as
documented in[8], show that values between 0.7
and 1.0 indicate clustering results with excellent
separation between clusters,viz. data points are
very close to the center of their cluster and remote
from the next nearest cluster. For the range from
0.5 to 0.7 one finds that data points are clearly as-
signed to cluster centers. Values from 0.25 to 0.5
indicate that cluster centers can be found, though
there is considerable “noise”, i.e. there are many
data points that cannot be clearly assigned to clus-
ters. Below a value of 0.25 it becomes practically
impossible to find significant cluster centers and to
definitely assign the majority of data points.

For comparison of the three different pre-
processing methods we have used standard K-
Means. However, we are well aware that for high-
dimensional data approaches like[3] may improve
results — very likely for all three preprocessing
strategies. However, in preliminary tests we found
that in the low-dimensional realms where the sil-
houette coefficient indicated reasonable separation



Algorithm 1 (GenerateConceptViews)
Input: number of dimensionsd;OntologyO with top conceptROOT; document setD

1 begin
2 Agenda := [ROOT];
3 repeat
4 Elem := First(Agenda);
5 Agenda := Rest(Agenda);
7 if Leaf(Elem)
8 then continue := FALSE;
9 else

10 if Atom(Elem) then Elem := Subconcepts(Elem); fi;
11 NewElem := BestSupportElem(Elem);
12 RestElem := Elem nNewElem;
13 if :Empty(RestElem) then Agenda := SortInto(RestElem;Agenda); fi;
14 Agenda := SortInto(NewElem;Agenda);
15 if Length(Agenda) > d then Agenda := Butlast(Agenda); fi;
16 fi;
17 if Length(Agenda) = d then Output(Agenda); fi;
18 until continue = FALSE;
19 end

Output: Set of lists consisting of single concepts and lists of concepts, which describe views onto the
document corpusD.
Auxiliary functions used:

Subconcepts(C) returns an arbitrarily ordered list of direct subconcepts ofC.
Support(C) cf. equation 4.
Support(ListC) is the sum over all conceptsC in ListC of Support(C).
SortInto(Element; List2) sortsElement, which may be a single concept or a list of

concepts, as a whole intoList2 ordering according to
Support(Element) and removing redundant elements.

BestSupportElem(List) returns theElement ofList with maximal Support(Element).
[Element] constructs list with oneElement.
[Element; List] list constructor extendingList such thatElement is first.
First(List);Rest(List) are the common list processing functions.
Atom(E) returns true whenE is not a list.
Leaf(E) returns true whenE is a concept without subconcepts.
List nE removes elementE fromList.
Length(List) returns the length ofList.
Butlast(List) returns a list identical toList, but excluding the last element.

between clusters, quality measures for standard and
improved K-Means coincided.

The general result of our evaluation using the sil-
houette measure was that K-Means based on COSA
preprocessing excelled the comparison baseline,
viz. K-Means based on TES, to a large extent.
K-Means based on SiVeR was so strongly hand-
icapped by having to cope with overly many di-
mensions that its silhouette coefficient always ap-
proached0 — indicating that no reasonable clus-
tering structures could be found.

One exemplary, but overall characteristic dia-
gramm depicted in Figure 1 shows the silhouette
coefficient for a fixed number of features used
(namely 15) and a fixed number of clusters pro-
duced (namely 10). It does so for K-Means based
on SiVeR, for K-Means based on TES, and for K-

Means based on COSA. The results for SiVeR are
strictly disappointing. TES is considerably better,
but it still yields a silhouette coefficient that indi-
cates practically non-existent distinctions between
clusters. COSA produces for this parameter setting
89 views. We found that the best aggregations pro-
duced from COSA delivered clustering results with
silhouette measures of up to 0.48 — indicating in-
deed very reasonable separation between clusters.

Mean Squared Error
To base our comparisons not only on one single
measure we also did a study, evaluating the mean
squared error (MSE) for our approach and the cor-
responding baseline results. The mean squared er-
ror is a measure of compactness of a given cluster-
ing and is defined as follows.
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Figure 1: Comparing TES with 89 views produced
by COSA fork = 10; d = 15.

Definition 4 (MSE) The overall mean squared
error MSE for a given clusteringDM =
fD1; : : : ; Dkg is defined as

MSE(DM ) =

kX
i=1

MSE(Di): (8)

The mean squared error for one clusterMSE(Di)
is defined as

MSE(Di) =
X
p2Di

dist(p; �Di)
2: (9)

(where�Di
is the centroid of clusterDi)

We found that also for the MSE measure K-
Means based on COSA compared favorably against
K-Means based on TES. 49 of COSA’s views are
worse, but 40 of them are considerably better than
the TES baseline. Figure 2 shows the correspond-
ing results with a baseline for TES at 3240, but the
best values for COSA exhibit a MSE of only 1314.
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Figure 2: Comparing TES and 89 views produced
by COSA;k = 10; d = 15.

Varying number of features d and clusters
k

Then we explored how COSA and TES would fare
when varying the number of features used and the
number of clusters produced by K-Means.

Figure 3 depicts the dependency between the
number of features,d, used and the preprocessing
method for a fixed number of clusters produced
by K-Means, viz.k = 10. The line for COSA

shows the silhouette coefficient for the best aggre-
gation from the ones generated byGenerateCon-
ceptViews. We see that for TES and COSA the
quality of results decreases — as expected — for
the higher dimensions, though COSA still com-
pares favorably against TES.
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Figure 3: Comparing TES and the best aggregation
of COSA;k = 10; d = 10; 15; 30; 50; 100.

We have not included the lower bound of COSA
in Figure 3. The reason is that — so far — we
have not been very attentive to optimizeGener-
ateConceptViews in order to eliminate the worst
views up front. This, however, should be eas-
ily possible, because we observed that the bad re-
sults are produced by views that contain too many
overly general concepts like MATERIALTHING or
INTANGIBLE.

In the next experiments, we have varied the num-
ber of clusters,k, between 2 and 100, whiled re-
mained at15 (cf. Figure 4). The general result is
that the number of clusters does not affect the re-
sults produced by COSA and TES very much. The
slight increase of the silhouette coefficient is due
to a growing number of documents (up to 30%)
that cluster exactly at one point. There, viz. at
(0; : : : ; 0), all features disappear.
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Figure 4: Comparing TES and the best aggregation
produced by COSA;k = 2 : : : 100; d = 15.

Example for Interpretation
In order to provide a more concrete intu-
ition of the type of results returned by
GENERATECONCEPTVIEW, we here show
the list of concepts that corresponds to the best
aggregation for parametersk = 10 andd = 10 and
in a silhouette coefficient of0:598:



SAUNA, SOLARIUM, TERRACE, BEACH,
SEA RESSORT, ACTION AT OBJECT,

OVERNIGHT STAY, WATER SPORTS, TRAVELING,
HOTEL CATEGORY

Comparing some plain lists may already give the
user an intuition of how clustering results might be
distinguishable (or not distinguishable if the views
are very similar!). A better grip at interpretation is
however achieved by depicting the relevant parts of
the heterarchy as shown in Figure 5.
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Material_Thing

Facilities_of

Accomodation

Terrace

Action_at_Object
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Area

NonPrivate_

Facilities_of

Accomodation

City

Sea Ressort

SolariumSauna

Beach

Information

Hotel_Category

........

........
........

Figure 5: An example view generated by COSA

Here, one may recognize that
NONPRIVATE FACILITIES OF ACCOMODATION
and ACTIONs were important concepts used
for clustering and distinguishing documents.
Interpreting results, we may conjecture that
HOTEL CATEGORY (three, four, five star hotels,
etc.) is a concept, which might perhaps correlate
with facilities of the accomodation — a correlation
that happens to be not described in the given
ontology. Finally, we seeSEA RESSORTin this
view, which might play a role for clustering or
which might occur just because of uninterpretable
“noise”.

We currently explore GUI possibilities in order
to tie the interpretation of clustering results with
the navigation of the heterarchy in order to give the
user a good grip at different clustering views.

Conclusion
Our results support the general statement that struc-
ture can mostly be found in a low dimensional
space (cf.[2]). Our proposal is well suited to
provide a selected number of aggregations in sub-
spaces exploiting standard K-Means and compar-
ing favorably with baselines, like clustering based
ond terms ranked by tf/idf measures.

The selected concepts may be used to indicate to
the user, which text features were most relevant for
the particular clustering results and to distinguish
different views.

5 Related Work
All clustering approaches based on frequencies of
terms/concepts and similarities of data points suf-
fer from the same mathematical properties of the

underlying spaces (cf.[2; 5]). These properties im-
ply that even when “good” clusters with relatively
small mean squared errors can be built, these clus-
ters do not exhibit significant structural information
as their data points are not really more similar to
each other than to many other data points. There-
fore, we derive the high-level requirement for text
clustering approaches that they either rely on much
more background knowledge (and thus can come
up with new measures for similarity) or that they
cluster in subspaces of the input space.

In general, existing approaches (e.g.,[1; 6]) on
subspace clustering face the dual nature of “good
quality”. On the one hand, there are sound statis-
tical measures for judging quality. State-of-the-art
methods use them in order to produce “good” pro-
jections and, hence, “good” clustering results, for
instance:

� Hinneburg & Keim[6] show how projections
improve the effectiveness and efficiency of the
clustering process. Their work shows that pro-
jections are important for improving the per-
formance of clustering algorithms. In contrast
to our work, they do not focus on cluster qual-
ity with respect to the internal structures con-
tained in the clustering.

� The problem of clustering high-dimensional
data sets has been researched by Agrawal et al.
[1]: They present a clustering algorithm called
CLIQUE that identifies dense clusters in sub-
spaces of maximum dimensionality. Cluster
descriptions are generated in the form of min-
imized DNF expressions.

� A straightforward preprocessing strategy may
be derived from multivariate statistical data
analysis known under the name principal
component analysis (PCA). PCA reduces the
number of features by replacing a set of fea-
tures by a new feature representing their com-
bination.

� In [14], Schuetze and Silverstein have re-
searched and evaluated projection techniques
for efficient document clustering. They show
how different projection techniques signifi-
cantly improve performance for clustering,
not accompanied by a loss of cluster qual-
ity. They distinguish between local and global
projection, where local projection maps each
document onto a different subspace, and,
global projection selects the relevant terms for
all documents using latent semantic indexing.

Now, on the other hand, in real-world applica-
tions the statistically optimal projection, such as
used in the approaches just cited, often does not
coincide with the projection most suitable for hu-
mans to solve a particular task, such as finding the



right piece of knowledge in a large set of docu-
ments. Users typically prefer explicit background
knowledge that indicates the foundations on which
a clustering results has been achieved.

Hinneburg et al.[7] consider this general prob-
lem a domain specific optimization task. There-
fore, they propose to use a visual and interactive
environment to derive meaningful projections in-
volving the user. Our approach may be seen to
solve some part of task they assign to the user envi-
ronment automatically, while giving the user some
first means to explore the result space interactively
in order to select the projection most relevant for
her particular objectives.

Finally, we want to mention an interesting pro-
posal for feature selection made in[13]. Devaney
and Ram describe feature selection for an unsuper-
vised learning task, namely conceptual clustering.
They discuss a sequential feature selection strategy
based on an existing COBWEB conceptual cluster-
ing system. In their evaluation they show that fea-
ture selection significantly improves the results of
COBWEB. The drawback that Devaney and Ram
face, however, is that COBWEB is not scalable like
K-Means. Hence, for practical purposes of cluster-
ing in large document repositories, COSA seems
better suited.

6 Conclusion
In this paper we have shown how to include back-
ground knowledge in form of a heterarchy in or-
der to generate different clustering views onto a set
of documents. We have compared our approach
against a sophisticated baseline, achieving a result
favourable for our approach. In addition, we have
shown that it is possible to automatically produce
results for diverging views onto the same input.
Thereby, the user can rely on a heterarchy to con-
trol and possibly interpret clustering results.

The preprocessing method, COSA, that we pro-
pose is a very general one. Currently we try to
apply our techniques on a highly-dimensional data
set that is not based on text documents, but on a
real-world customer data base with over 3 million
clients. First preliminary results of our method on
this data base are very encouraging.
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