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Abstract

Representing high-order interactions in data
often results in large models with an in-
tractable number of hidden variables. In
these models, inference and learning must op-
erate without instantiating the entire set of
variables. This paper presents a Metropolis-
Hastings sampling approach to address this
issue, and proposes new methods to discrimi-
natively estimate the proposal and target dis-
tribution of the sampler using a ranking func-
tion over configurations. We demonstrate our
approach on the task of paper and author
deduplication, showing that our method en-
ables complex, advantageous representations
of the data while maintaining tractable learn-
ing and inference procedures.

1. Introduction

Probabilistic models are commonly factored into a set
of local decisions to make exact inference tractable.
Often, this factorization sacrifices representational
power that could be used to model important non-
local phenomena in the data.

For example, language processing models are often
restricted to interactions between consecutive words,
vision models to adjacent pixels, and bioinformatics
models to adjacent molecules. However, these local
models ignore global characteristics of the data, such
as properties of discourse, cohesion of an entire scene,
or gene co-occurrence regularities.

The difficulty in representing these global phenomena
is that it often results in an exponential increase in
the size of the solution search space. In many cases,
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this is realized by a model in which the number of
hidden variables is exponential in the size of the input
(for example, a clustering model with a variable for
every subset of the input). In these situations, the set
of hidden variables cannot even be fully instantiated,
much less iterated over for inference.

Recently, a number of relational probabilistic mod-
els have been proposed which provide the practitioner
great flexibility in specifying the representation and
connectivity of the variables. One example, Markov
logic networks (MLNs), accepts as input a set of first-
order logic formulae, from which a Markov network
is instantiated for a given set of observed input con-
stants (Richardson & Domingos, 2006). This instanti-
ation, or grounding, creates a random variable for all
possible instantiations of each predicate. Thus, if the
highest predicate arity is c, and the number of con-
stants is n, then the number of instantiated variables
is O(nc). It is intractable to instantiate such a large
set of variables for real-world problems.

However, these high-arity predicates are precisely
the sort of predicates that are useful for modeling
global characteristics of the data. For example, con-
sider a predicate HaveSameAdvisor({ai . . . ai+k}),
indicating whether a subset of students {ai . . . ai+k}
have the same advisor. This predicate must be
instantiated for every subset of student constants,
i.e. the power set P(A). Clearly, this is infea-
sible for a large set of students. However, con-
structing these types of query predicates enables
the construction of powerful evidence predicates such
as CoauthoredAtLeastTwoPapers({ai . . . ai+k})
(indicating whether there are at least two papers
that some combination of authors from {ai . . . ai+k}
have co-authored) and a generalized predicate
NumberOfStudents(ai) (indicating the number of
students a researcher advises simultaneously).

It should be noted that this problem is not specific to
MLNs. Indeed, the problem is inherent in any domain
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in which we would like to model aggregate character-
istics of predicted variables. However, the flexible rep-
resentation language of MLNs brings these issues to
the fore.

Because the set of random variables cannot be enu-
merated, approximations will undoubtedly be required
for inference and parameter estimation; however, there
are very few existing techniques that are specifically
designed to operate without a full grounding of the
variable set.

One way to avoid grounding these large networks is
to perform lifted inference (Poole, 2003; de Salvo Braz
et al., 2005). Lifted inference enables predictions to be
made about an entire population without instantiating
a node for each member of the population. The key
insight of this approach is to use a lifted version of
variable elimination to perform inference on a large
set of variables implicitly. However, in many domains
it is necessary to make inferences about specific input
nodes, rather than over the entire population. It is
not clear how current versions of lifted inference can
address this, although approximate methods may be
possible.

Another approach is to perform Markov chain Monte
Carlo (MCMC) sampling. MCMC algorithms perform
MAP inference by stochastically searching the solution
space, guided by an iteratively improved approxima-
tion of the joint (or conditional) probability distribu-
tion. Many sampling algorithms consider models in
which the number of variables is tractable, but cal-
culating the normalization constant is not. For ex-
ample, recent approaches to memory-efficient MAP in
MLNs still require enumerating all ground clauses as
part of the initialization procedure (Singla & Domin-
gos, 2006).

This paper presents a Metropolis-Hastings (M-H) sam-
pler to perform MAP inference in models in which it
is infeasible to instantiate all hidden variables. The
M-H sampler relies on two distributions: a proposal
distribution, from which we sample possible changes
to the predicted configuration, and a target distribu-
tion, which scores the quality of the proposed config-
uration. Because this approach to inference only re-
quires a method of comparing two configurations, we
can avoid instantiating many variables that are irrele-
vant to this comparison.

While there has been some work on inference in these
models, there has been noticeably less work on pa-
rameter estimation. Standard maximum likelihood ap-
proaches are infeasible here: Computing the data like-
lihood requires computing a normalization constant

that sums over all possible settings of an exponential
number of variables.

Most approximate learning techniques again assume
the difficulty is in computing the normalizer, but in
this paper we address the case where it is intractable
not only to compute the normalizer, but also to enu-
merate each possible prediction in the training set.

Knowing that M-H sampling will be used for inference,
it is natural to attempt to learn parameters that im-
prove the efficiency and accuracy of that sampler. This
paper presents a way to directly estimate the target
and proposal distributions of the M-H sampler. Given
examples of two candidate configurations, we propose
discriminatively learning a ranking function that will
assign higher scores to configurations that are closer to
the true configuration. We also discuss ways of sharing
parameters between the target and proposal distribu-
tions to improve learning efficiency.

We present results with these techniques on two real-
world datasets for coreference resolution, in which the
task is to cluster paper and author mentions into
co-referent sets. Unlike traditional techniques which
factor the problem into a set of pairwise variables
indicating whether two mentions are co-referent, we
represent interactions among entire sets of mentions,
which enables first-order features over candidate clus-
ters. We compare our approach against the tradi-
tional approach, and conclude that even with simple
search procedures this broader representational power
can improve accuracy.

2. Model

Let X = {x1 . . . xn} be a set of observed variables, and
let Y = {y1 . . . ym} be a set of unobserved variables
that we wish to predict. This paper is concerned with
cases in which the Y variables cannot be explicitly
enumerated, e.g. m = O(2n).

Although our learning and inference algorithms could
be applied to a variety of model structures, this paper
focuses on a single (general) class of clustering models:
models where the Y variables indicate some compat-
ibility among sets of X variables. We introduce two
types of Y variables: those that indicate the compat-
ibility among a cluster of X variables, and those that
indicate the compatibility of a pair of clusters of X
variables.

The model represents the conditional distribution
P (Y |X) as follows: Each possible clustering of the
data can result in both a different set of instantiated Y
variables and in a different assignment to those instan-
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Figure 1. Two factor graphs for two different instantiation of the clustering model. The figure on the left depicts the model
for a configuration predicting two clusters; the figure on the right for a model with three clusters. The model contains
two types of factors: those computing the within-cluster compatibility (fw), and those computing the between-cluster
compatibility (fb). Note that the model on the right introduces five new Y variables (y3, y

′
2, y

′
12, y23, y13).

tiated variables. The value of P (Y |X) is represented
with a normalized log-linear model representing how
likely configuration Y is. Thus, configuration Y is as-
signed a score, and the conditional density of Y is ob-
tained by dividing this score by the sum of the scores
of all possible configuration.

We parameterize this scoring function with potential
functions that examine both within-cluster attributes
and between-cluster attributes.

The functional form of this distribution is as follows:

P (Y |X) =
1

ZX

∏
yi∈Y

fw(yi,xi)
∏

yi,yj∈Y

fb(yij ,xij) (1)

where ZX is the input-dependent normalizer, factor
fw parameterizes the within-cluster compatibility, and
factor fb parameterizes the between-cluster compati-
bility. We assume a log-linear model of the potential
functions, i.e f(yi, xi) = exp(

∑
k λkgk(yi, xi)).

Note that this differs from a more traditional factored
representation that contains a Y variable for each pair
of X variables, enforcing transitivity among the Y ’s to
ensure a consistent clustering. Many common cluster-
ing algorithms (k-Means, greedy agglomerative clus-
tering, etc) can be viewed as instances of these pair-
wise models. However, by only considering “pairwise”
Y variables, these approaches have a limited represen-
tation, since they can only consider evidence about
pairs of X variables, rather than sets of X variables.
By considering sets of X variables, the feature func-
tions in Equation 1 can compute what we term first-

order features: features that can calculate existential
and universal properties of a set of objects.

Figure 1 displays two factor graphs for two different
instantiation of Y . The figure on the left displays the
set of variables instantiated for a configuration predict-
ing two clusters, and the figure on the right displays
the variables instantiated for a configuration of three
clusters. From these figures, we can see that the set
of all possible Y variables is doubly-exponential: Not
only is there a yi for each subset of the input, but
there is also a yij for each pair of subsets. We can see
that this greater representation leads to a model that
is infeasible to completely instantiate.

Since we cannot instantiate all of the Y variables, we
must modify traditional inference and learning proce-
dures to operate with partial instantiations. To do
this, we introduce methods that consider only the dif-
ference between two instantiations. As we will describe
below, this will allow us avoid instantiating many vari-
ables that are irrelevant to this comparison.

For example, using Equation 1, we can calculate un-
normalized scores for both configurations given in Fig-
ure 1; however, these scores need not consider variables
that are the same in both configurations.

In the following sections, we will describe ways to dis-
criminatively learn the λ weights from Equation 1 so
that better configurations are given higher scores. We
can then employ this learned model to perform MAP
inference with a sampling algorithm that stochasti-
cally searches the configuration space, proposing and
accepting moves based on the relative scores of each
configuration.



Tractable Learning and Inference with High-Order Representations

3. MAP Inference

Maximum a posteriori (MAP) inference seeks the so-
lution to the following optimization problem:

Y ∗ = argmax
Y

P (Y |X)

Exact MAP inference in models with small tree-width
can typically be computed with a dynamic program
(such as the max-product algorithm). When the model
contains many loopy dependencies, variational or sam-
pling approximations become necessary. However,
these approximations generally assume all variables
can be instantiated, which is not true in our case.

Instead, we employ Metropolis-Hastings (M-H) sam-
pling. M-H is an MCMC sampling procedure that es-
timates a distribution from a sequence of samples of
one or more variables from that distribution.

M-H can be viewed as a way to search the configu-
ration space. Given an initial configuration Yi, the
probability of moving to a new configuration Y ′

i is pro-
portional to the acceptance probability

α(Y ′
i |Yi) =

P (Yi|X)
P (Y ′

i |X)
· Q(Yi|Y ′

i )
Q(Y ′

i |Yi)

If α(Y ′
i |Yi) > 1, then the new configuration Y ′

i is cho-
sen. Otherwise, the original configuration Yi is re-
tained with probability α(Y ′

i |Yi). A temperature pa-
rameter may also be used to reduce the amount of
randomness in this decision, similar to simulated an-
nealing approaches. This sampling procedure has been
used in a generative model for similar problems in Pa-
sula et al. (2003).

The Q distribution is called the proposal distribution
because sampling from Q proposes changes to the cur-
rent configuration. The likelihood ratio of the Q distri-
butions weights the likelihood ratio of the target dis-
tribution P . Note that we do not have to compute nor-
malization constants for this sampler since they cancel
in the likelihood ratios.

In the clustering model, Q considers a set of possible
changes to the current configuration. A typical imple-
mentation of Q would be to sample a pair of clusters,
then sample a perturbation of these clusters that may
result in a merging, splitting, or reshuffling of the clus-
ters.

With ergodicity constraints on Q, it can be shown that
the Markov chain induced by M-H will converge to
the proper stationary distribution for P . Given P ,
Q, and an initial configuration, we can perform MAP

inference by sampling from this Markov chain until
convergence or until a fixed number of samples is met.

In the next section, we discuss how to estimate the
parameters of P and Q to maximize a discriminative
criterion appropriate for the sampler.

4. Parameter Estimation

Given a set of labeled data for which the true set-
ting of Y is known, we wish to estimate the model
parameters λ that will maximize performance on un-
seen data. A standard maximum likelihood approach
chooses λ to maximize the log-likelihood of the labeled
data, typically found by gradient ascent on the deriva-
tive of the log of Equation 1 with respect to λ. Unfor-
tunately, this gradient involves computing marginals
over Y variables, requiring the normalizer ZX , which
is infeasible to compute in our model. Furthermore,
this method requires enumerating all the Y variables
in the labeled data, which is also intractable.

One solution is to estimate the marginals by sam-
pling from P (Y |X) using similar sampling methods
discussed in Section 3. However, since these marginals
must be computed at each iteration of the learning
procedure, this will require a prohibitive number of
samples.

Instead, we choose a training criterion that is mind-
ful of how MAP inference is performed. Since the
M-H sampler only requires likelihood ratios, the full
marginal distribution is not required to perform infer-
ence. Instead, we optimize λ to maximize the accuracy
of the sampler; that is, to encourage the sampler to ac-
cept good configurations over poor ones.

We frame this as the following ranking task: Given two
configurations, rank the “better” configuration higher
than the other.

Let Zp>q be a binary random variable indicating if
configuration Yp receives a rank higher than config-
uration Yq. We model the conditional probability of
configuration Zp>q as the score given by the log-linear
model of Equation 1 to Yp normalized by the sum of
the scores for Yp and Yq. That is, P (Zp>q|X) =∏

yi∈Yp
fw(yi,xi)

∏
yi,yj∈Yp

fb(yij ,xij)∑
k∈p,q

∏
yi∈Yk

fw(yi,xi)
∏

yi,yj∈Yk
fb(yij ,xij)

(2)

This formulation avoids computing the normalizer ZX ,
and also enables a training criterion well-suited to the
inference procedure.

Given a set of labeled data for which the true optimal
configuration is known, we can generate pairs of con-
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figurations Yp and Yq, and can label the true value of
Zp>q. The true value of Zp>q can be calculated using
any metric of interest. For example, in a clustering
task, we can label Zp>q = 1 if the pairwise F1 per-
formance of clustering Yp is greater than that for Yq.
Domain-specific metrics may be used without requir-
ing additional modifications to the training procedure.

Given this set of labeled data, we can perform max-
imum likelihood learning using the gradient of Equa-
tion 2, which is possible now since the normalization
over all possible configurations is no longer necessary.

4.1. Training Example Generation

The above approach to learning requires a set of con-
figuration pairs, each labeled with the correct Zp>q.
For a given labeled data set, the number of possible
training examples is quadratic in the size of the config-
uration space. Certainly, generating all such examples
is infeasible. Therefore, we must decide which pairs to
sample.

A simple approach is to sample uniformly at random.
However, given the sparsity of many tasks, this may
result in a large number of “easy” examples, for which
there is a large difference in quality between configu-
rations in a pair. Instead, we desire to focus our sam-
pling on the difficult examples the sampler will likely
consider at inference time.

With this in mind, we propose the following algorithm
to sample M labeled training examples: While the
number of labeled training examples is less than M ,
draw a sample from the Metropolis-Hastings inference
engine and accept or reject it using current model pa-
rameters λ. Create a labeled example from the con-
figuration pair consisting of the current configuration
and the proposed configuration. Re-estimate λ from
this augmented labeled data pool.

In this fashion, performing inference on the training
set iteratively updates the model parameters, and as
this sampling proceeds, the sampled labeled examples
become increasingly similar to the sort of configura-
tions likely to be encountered in unseen data.

4.2. Tying Parameters in P and Q

While we have described the form of P , we have not
described the form of the proposal distribution Q. In
general, this can be a nearly arbitrary distribution,
with the restriction that it results in an ergodic Markov
chain; that is, given enough samples, the initial con-
figuration does not affect the space explored by the
sampler.

However, if Q is uniform and the solution space
is highly-peaked, then the sampler will require a
large number of iterations before it reaches a high-
probability configuration. Thus, Q is often a cheaper,
stochastic approximation to P that attempts to pro-
pose moves that are accepted more often than not. By
adding stochasticity to Q, we can ensure that enough
exploration takes place to converge to the correct dis-
tribution.

Given this intuition, we propose reusing the λ param-
eters from P to parameterize Q. Viewing Q as an
approximation to P , Q may only require a subset of
λ. The specific form of Q and which λ’s to reuse are
largely domain-dependent decisions; but for the clus-
tering model, a reasonable procedure for sampling Q
is to select two clusters, then perform stochastic local
search to propose a perturbation to the two clusters.
This local search can use many of the same parameters
as P for evaluating local decisions. The less stochas-
ticity in this local search, the closer the proposal dis-
tribution resembles P . Thus, there is a tradeoff among
Q’s computational cost, acceptance rate, and stochas-
ticity. Discovering the best trade-off is often an em-
pirical question.

5. Experiments

We perform experiments on two identity uncertainty
tasks: citation matching and author disambiguation.
Citation matching is the task of determining whether
two research paper citation strings refer to the same
paper. We use the Citeseer corpus (Lawrence et al.,
1999), containing approximately 1500 citations, 900 of
which are unique. The citations are manually labeled
with cluster identifiers, and the strings are segmented
into fields such as author, title, etc. The citation data
is split into four disjoint categories by topic, and the
results presented are obtained by training on three cat-
egories and testing on the fourth.

With our proposed clustering model, we create a num-
ber of first-order features such as AllTitlesMatch,
AllAuthorsMatch, AllJournalsMatch, etc., as
well as their existential counterparts, ThereExist-
sTitleMatch, etc. We also include count features,
which indicate the number of these matches in a set of
mentions.

Additionally, we add edit distance features, which cal-
culate approximate matches1 between title fields, etc.,
for each pair of citations in a set of citations. First-
order features are used for these as well, such as “there

1We use the Secondstring package, found at
http://secondstring.sourceforge.net
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Objects Pairs
constraint 82.3 76.7
reinforce 93.4 78.7

face 88.9 83.2
reason 81.0 84.9

Table 1. Pairwise F1 performance for the citation match-
ing task, where Objects is our proposed model that takes
advantage of first-order features of the data, and Pairs is
a model restricted to only consider pairwise features. Ob-
jects outperforms Pairs on three of the four testing sets.

Objects Pairs
miller d 41.9 61.7

li w 43.2 36.2
smith b 65.4 25.4

Table 2. Pairwise F1 performance on the author disam-
biguation task. Objects outperforms Pairs on two of the
three testing sets.

exists a pair of citations in this cluster which have ti-
tles that are less than 30% similar” and “the minimum
edit distance between titles in a cluster is greater than
50%.”

We present experiments using a low temperature ver-
sion of the sampler. That is, with very high probabil-
ity, the proposal distribution proposes the move with
the highest score, and this move is accepted. Addi-
tionally, these experiments do not use the fb factors,
relying instead on the within cluster factors fw. We
show that even with this simplified version of the sam-
pler, the higher representational power can result in
better performance.

We evaluate using pairwise precision, recall, and F1,
which measure the system’s ability to predict whether
each pair of constants refer to the same object or not.
Table 1 shows the advantage of our proposed model
(Objects) over a model that only considers pairwise
factors between mentions (Pairs). Note that Pairs
is a strong baseline that performs collective inference
of citation matching decisions, but is restricted to use
compute features over pairs of citations. Thus, the
performance difference is due to the ability to model
first-order features of the data.

Author disambiguation is the task of deciding whether
two strings refer to the same author. To increase the
task complexity, we collect citations from the Web con-
taining different authors with matching last names and
first initials. Thus, simply performing a string match
on the author’s name would not be sufficient in many
cases. We searched for three common last name / first

initial combinations (Miller, D; Li, W; Smith, B).
From this set, we collected 400 citations referring to
56 unique authors. For these experiments, we train on
two subsets and test on the third.

We generate first-order features similar to those used
for citation matching. Additionally, we include fea-
tures indicating the overlap of tokens from the titles
and indicating whether there exists a pair of authors in
this cluster that have different middle names. This last
feature exemplifies the sort of reasoning enabled by
first-order features: For example, consider a pairwise
feature that indicates whether two authors have the
same middle name. Very often, middle name informa-
tion is unavailable, so the name “Miller, A.” may have
high similarity to both “Miller, A. B.” and “Miller,
A. C.”. However, it is unlikely that the same person
has two different middle names, and our model learns
a weight for this feature. Table 2 demonstrates the
advantage of this method.

Overall, Objects achieves F1 scores superior to
Pairs on 5 of the 7 datasets. These results indicate
the potential advantages of using more complex repre-
sentations of the data.

6. Related Work

Methods to avoid instantiating all the variables in a
Markov network have received limited attention in
the machine learning literature. In addition to the
work discussed in the introduction, Singla and Domin-
gos (2006) present one approach to address the space
complexity of MLNs. They propose LazySAT, a vari-
ant of a popular weighted SAT solver that takes ad-
vantage of the sparsity of true predicates, common
in relational domains. Our approach differs from
LazySAT in three principal ways. First, the predi-
cates we enable are often not sparse. Consider again
the HaveSameAdvisor(ai . . . ai+k) predicate. For an
advisor with 10 students, there exists a ground atom
for every subset of those 10 students that will be true.

Second, LazySAT requires iterating over all possible
ground clauses as part of its initialization procedure.
While these clauses are not necessarily stored in mem-
ory simultaneously, simply iterating these clauses is
infeasible for our domain.

Third, we propose a discriminative training criterion
that directly optimizes the search procedure used at in-
ference time, rather than the pseudo-likelihood train-
ing advocated by Richardson and Domingos (2006).

There has been a growing interest in non-local model-
ing for natural language processing tasks. This has in-
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cluded using Gibbs sampling in information extraction
(Finkel et al., 2005), approximate inference in loopy
sequence models (Bunescu & Mooney, 2004; Sutton &
McCallum, 2004), integer linear programming to en-
force global constraints in semantic role labeling (Roth
& Yih, 2004), and search-based prediction to perform
joint inference of multiple tasks (Daumé III & Marcu,
2005).

Additionally, many probabilistic models of object iden-
tification have been proposed in the past 40 years in
databases and natural language processing. With the
introduction of statistical relational learning, more so-
phisticated models of identity uncertainty have been
developed that consider the dependencies between re-
lated consolidation decisions.

The most relevant identity uncertainty models are the
relational models in Milch et al. (2005), McCallum
and Wellner (2003), and Parag and Domingos (2004).
McCallum and Wellner (2003) present experiments
using a conditional random field that factorizes into
a product of pairwise decisions about mention pairs
(Model 3). These pairwise decisions are made collec-
tively using relational inference; however, as pointed
out in Milch et al. (2004), there are shortcomings to
this model that stem from the fact that it does not
capture features of objects, only of mention pairs. For
example, first-order features such as “a researcher is
unlikely to publish in more than 2 different fields” or
“a person is unlikely to be referred to by three different
names” cannot be captured by solely examining pairs
of mentions. Additionally, decomposing an object into
a set of mention pairs results in “double-counting” of
attributes, which can skew reasoning about a single
object (Milch et al., 2004). Similar problems apply to
the model in Parag and Domingos (2004).

Milch et al. (2005) address these issues by constructing
a generative probabilistic model over possible worlds
called BLOG, where realizations of objects are typi-
cally sampled from a generative process. While BLOG
provides useful semantics for reasoning about unknown
objects, the transition to generatively trained models
sacrifices some of the attractive properties of the dis-
criminative model in McCallum and Wellner (2003)
and Parag and Domingos (2004), such as the ability
to easily incorporate many overlapping features of the
observed mentions. In contrast, generative models are
constrained either to assume the independence of these
features or to explicitly model their interactions.

Identity uncertainty can also be seen as an instance of
supervised clustering. Daumé III and Marcu (2004)
and Carbonetto et al. (2005) present similar Bayesian
supervised clustering algorithms that use a Dirichlet

process to model the number of clusters. As a gener-
ative model, it has similar advantages and disadvan-
tages as Milch et al. (2005), with the added capability
of integrating out the uncertainty in the true number
of objects.

This paper has presented a discriminatively trained,
conditional model of identity uncertainty that incorpo-
rates the attractive properties of McCallum and Well-
ner (2003) and Milch et al. (2005), resulting in a dis-
criminative model to reason about objects.

Finally, the ranking function estimation in Section 4 is
similar to work on discriminative re-ranking for pars-
ing developed by Collins (2000), who optimizes a loss
function based on the number of ranking errors made
on the training set.

7. Conclusions and Future Work

We have presented learning and inference proce-
dures for models in which instantiating the entire
set of random variables is impractical. By building
a Metropolis-Hastings sampler over the configuration
space, we can perform efficient MAP inference.

We have also proposed a novel method of estimating
the parameters of a Metropolis-Hastings sampler, by
inducing a ranking function over pairs of configura-
tions. This formulation makes learning in the model
tractable, and optimizes a criterion suited to the sam-
pling inference procedure.

By combining these techniques, we can enable mod-
els that capture global phenomena of the data. We
demonstrate our approach using first-order existential
and universal features on two real-world identity un-
certainty datasets.

Future work will extend our approach to perform ex-
periments on a wider variety of tasks. The model we
have described here can be applied to many tasks other
than identity uncertainty. For example, if the poten-
tial functions measure how likely it is that a set of
fields belong to the same record, then we can learn
a database model that can be used to extract entire
records from text, as in Wick et al. (2006). Addition-
ally, by treating partial parse trees as clusters in our
model, we can construct a parsing model that incor-
porates global features over candidate trees.

We also plan to empirically evaluate different loss func-
tions for the ranking function, such as a regression
model, or a model that considers the long-term effects
of a local configuration change, as in recent work on
search-based prediction (Daumé III et al., 2006).
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