
Improved Dynamic Schedules for Belief Propagation

Charles Sutton and Andrew McCallum
Department of Computer Science

University of Massachusetts
Amherst, MA 01003 USA

{casutton,mccallum}@cs.umass.edu

Abstract

Belief propagation and its variants are popu-
lar methods for approximate inference, but
their running time and even their conver-
gence depend greatly on the schedule used
to send the messages. Recently, dynamic up-
date schedules have been shown to converge
much faster on hard networks than static
schedules, namely the residual BP schedule
of Elidan et al. [2006]. But that RBP algo-
rithm wastes message updates: many mes-
sages are computed solely to determine their
priority, and are never actually performed.
In this paper, we show that estimating the
residual, rather than calculating it directly,
leads to significant decreases in the number
of messages required for convergence, and in
the total running time. The residual is es-
timated using an upper bound based on re-
cent work on message errors in BP. On both
synthetic and real-world networks, this dra-
matically decreases the running time of BP,
in some cases by a factor of five, without af-
fecting the quality of the solution.

1 INTRODUCTION

Many popular approximate inference methods, such as
belief propagation, its generalizations, including EP
[Minka, 2001] and GBP [Yedidia et al., 2000], and
structured mean-field methods [Jordan et al., 1999],
consist of a set of equations which are iterated to find
a fixed point. The fixed-point updates are not usually
guaranteed to converge. The schedule for propagating
the updates can make a crucial difference both to how
long the updates take to converge, and even whether
they converge at all.

Recently, dynamic schedules—in which the message
values during inference are used to determine which

update to perform next—have been shown to converge
much faster on hard networks than static schedules [El-
idan et al., 2006]. But the residual schedule proposed
by Elidan et al., which we call residual BP with looka-
head one (RBP1L), determines a message’s priority by
actually computing it, which means that many mes-
sage updates are “wasted”, that is, they are computed
solely for the purpose of computing their priority, and
are never actually performed. A significant fraction of
messages computed by RBP1L are wasted in this way.

In this paper, we show that rather than computing
the residual of each pending message update, it is far
more efficient to approximate it. Recent work [Ihler
et al., 2004] has examined how a message error can
be estimated as a function of its incoming errors. In
our situation, the error arises because the incoming
messages have been recomputed. The arguments from
Ihler et al. apply also to the message residual, which
leads to effective method for estimating the residual of
a message, and to a dynamic schedule that is dramat-
ically more efficient than RBP1L.

The contributions of this paper are as follows. First,
we describe how the message residual can be upper-
bounded by the residuals of its incoming messages
(Section 3). We also describe a method for estimat-
ing the message residual when the factors themselves
change (for example, from parameter updates), which
leads to an intuitive method for initializing the resid-
ual estimates. Then we introduce a novel message
schedule, which we call residual BP with lookahead zero
(RBP0L) (Section 4). On several synthetic and real-
world data sets, we show that RBP0L is as much as
five times faster than RBP1L, while still finding the
same solution (Section 5). Finally, we examine how
to what extent the distance that a message changes in
a single update predicts its distance to its final con-
verged value (Section 5.3). We measure distance in
several different ways, including the dynamic range of
the error and the Bethe energy. Surprisingly, the dif-
ference in Bethe energy has almost no predictive value
for whether a message update is nearing convergence.

2 BACKGROUND

Let p(x) factorize according to an undirected fac-
tor graph G [Kschischang et al., 2001] with factors
{ta(xa)}Aa=1, so that p can be written as

p(x) =
1
Z

∏
a

ta(xa), (1)

where Z is the normalization constant

Z =
∑
x′

∏
a

ta(x′a). (2)

We will use the indices a and b to denote factors of G,
and the indices i and j to denote variables. By {i ∈ a}
we mean the set of all variables i in the domain of the
factor ta, and conversely by {b 3 i}, we mean the set
of all factors tb that have variable i in their domain.

Belief propagation (BP) is a popular approximate in-
ference algorithm for factor graphs, dating to Pearl
[1988]. The messages at iteration k + 1 are computed
by iterating the updates

m
(k+1)
ai (xi)← κ

∑
xa\xi

ta(xa)
∏

{j∈a}\i

m
(k)
ja (xj)

m
(k+1)
ia (xi)← κ

∏
{b3i}\a

m
(k)
bi (xi)

(3)

until a fixed point is reached. In the above, κ is a
normalization constant to ensure the message sums to
1. The initial messages m(0) are set to some arbitrary
value, typically a uniform distribution.

We write the message updates in a generic fashion as

m
(k+1)
cd (xcd)← κ

∑
xc\xcd

ta(xc)
∏

{b∈N(c)}\d

m
(k)
bc (xc),

(4)
where c and d may be either factors or variables, as
long as they are neighbors, N(c) means the set of
neighbors of c, and ta(xc) is understood to be the iden-
tity if c is a variable. This notation abstracts over
whether a message is being sent from a factor or from
a variable, which is convenient for describing message
schedules.

In general, these updates may have multiple fixed
points, and they are not guaranteed to converge. Con-
vergent methods for optimizing the Bethe energy have
been developed [Yuille and Rangarajan, 2001, Welling
and Teh, 2001], but they are not used in practice both
because they tend to be slower than iterating the mes-
sages (3), and because when the BP updates do not
converge, it has been observed that the Bethe approx-
imation is bad anyway.

Now we describe in more detail how the iterations are
actually performed in a BP implementation. This level

of detail will prove useful in the next section for un-
derstanding the behavior of dynamic BP schedules. A
vector m = {mcd} is maintained of all the messages,
which is initialized to uniform. Then until the mes-
sages are converged, we iterate: A message mcd is se-
lected according to the message update schedule. The
new value m′

cd is computed from its dependent mes-
sages in m, according to (3). Finally, the old message
(c, d) in m is replaced with the newly computed value
m′

cd.

The important part of this description is the distinc-
tion between when a message update is computed and
when it is performed. When a message is computed,
this means that its new value is calculated according
to (3). When a message is performed, this means that
the current message vector m is updated with the new
value. Synchronous BP implementations compute all
of the updates first, and then perform them all at once.
Asynchronous BP implementations almost always per-
form an update as soon as it is computed, but it is
possible to compute an update solely in order to de-
termine its priority, and not perform the update until
later. As we describe below, this is exactly the tech-
nique used by the Elidan et al. [2006] schedule.

3 ESTIMATING MESSAGE
RESIDUALS

In this section, we describe how to compute an upper
bound on the error of a message, which will be used as
a priority for scheduling messages. We define the error
ecd(xcd) of a message mcd(xcd) as its multiplicative
distance from its previous value m

(k)
cd (xcd) , so that

mcd(xcd) = ecd(xcd)m
(k)
cd (xcd). (5)

We define the residual of a message mcd(xcd) as the
worst error over all assignments, that is,

r(mcd) = max
xcd

|log ecd(xcd)| = max
xcd

∣∣∣∣∣log
mcd(xcd)

m
(k)
cd (xcd)

∣∣∣∣∣ .

(6)
This corresponds to using the infinity norm to mea-
sure the distance between log message vectors, that is,
‖ log mcd − log m

(k)
cd ‖∞.

An alternative error measure is the dynamic range of
the error, which has been studied by Ihler et al. [2004].
This is

d(mcd) = max
xcd,x′

cd

log
ecd(xcd)
ecd(x′cd)

(7)

Later we compare the residual and the dynamic error
range as priority functions for message scheduling.

In the rest of this section, we show how to upper-bound
the message errors in two different situations: when

the values of a message’s dependents change, and when
the factors of the model change.

First, suppose that we have available a previously-
computed message value for m

(k)
cd (xd), so that

m
(k)
cd (xd) = κ

∑
xcd

tc(xc)
∏

{b∈N(c)}\d

m
(k)
bc (xc), (8)

and that now new messages {m(k+1)
bc } are available for

the dependents. We wish to upper bound the residual
rcd without actually repeating the update (8). Then
the residual can be upper-bounded simply by the fol-
lowing:

r(mcd) ≤
∑

{b∈N(c)}

r(mbc). (9)

The full proof is given in the Appendix, but it is a
straightforward application of the corresponding argu-
ments from Ihler et al. for the dynamic range measure.

Now consider the second situation, when a factor ta
changes. Define ea to be the multiplicative error in
the factor, so that

t(k+1)
a (xa) = ea(xa)t(k)

a (xa). (10)

Suppose we have already computed a message m
(k)
cd ,

so that in the current message vector

m
(k)
cd (xd) =

∑
xcd

t(k)
c (xc)

∏
{b∈N(c)}\d

m
(k)
bc (xc), (11)

and as before we wish to upper bound r(mcd). Then
substitution into (6) yields

r(mcd) ≤ max
xa

t
(k+1)
a (xa)

t
(k)
a (xa)

. (12)

4 DYNAMIC BP SCHEDULES

There has been little work in how to schedule the
message updates (3). Recently, Elidan et al. [2006]
showed that dynamic schedules are significantly supe-
rior to static schedules for BP, including several ver-
sions of the tree reparameterization schedule (TRP)
[Wainwright et al., 2001].

4.1 RESIDUAL BP WITH LOOKAHEAD
(RBP1L)

In this section, we describe the dynamic schedule pro-
posed by Elidan et al. [2006]. They call their algorithm
residual belief propagation, but in the next section we
introduce a different BP schedule that also depends on
the message residual. Therefore, to avoid confusion we
refer to the Elidan et al. algorithm by the more specific
name of residual BP with lookahead one (RBP1L).

Algorithm 1 RBP1L [Elidan et al., 2006]

function Rbp1l ()
1: m← uniform message array
2: q ← InitialPq()
3: repeat
4: mbc ← DeQueue(q)
5: m|bc ← mbc {Perform update.}
6: for all d in {d ∈ N(c)}\b do
7: Compute update mcd

8: Remove any pending update m
(k)
cd from q

9: Add mcd to q with priority r(mcd)
10: end for
11: until messages converged

function InitialPq ()
1: q ← empty priority queue
2: for all messages (c, d) do {Initialize q}
3: Compute update mcd

4: Add mcd to q with priority r(mcd)
5: end for
6: return q

The basic idea in RBP1L (Algorithm 1) is that when-
ever a message mcd is pending for an update, the
message is computed and placed on a priority queue
to be performed. The priority of the message is
the distance between its current value and its newly-
computed value: the exact distance measure is not
specified by Elidan et al., although they assume that
it is based on a norm ‖mcd −m

(k)
cd ‖ between the dif-

ference in message values. In this paper, we use the
residual (6) between log message values.

The problem with this schedule can be seen in Lines 7–
9 of Algorithm 1. When an update mbc is performed,
each of its dependents mcd is recomputed and placed in
the queue. If a previous update m

(k)
cd was already pend-

ing in the queue, then that message is discarded. We
refer to this as a “wasted” update. In Section 5, we see
that this is a relatively common occurrence in RBP1L,
so preventing this can yield to significant gains in con-
vergence speed.

4.2 AVOIDING LOOKAHEAD (RBP0L)

In this section we present our dynamic schedule, resid-
ual BP with lookahead zero (RBP0L). In Section 3 we
showed that a residual can be upper-bounded by its
sum of incoming residuals. The idea behind RBP0L
is to use that upper bound as the message’s priority,
so that an update is never computed unless it will ac-
tually be performed. The full algorithm is given in
Algorithm 2.

There are three fine points here. The first question is

Algorithm 2 RBP0L

function Rbp0l ()
1: m← uniform message array
2: T ← total residuals; initialized to 0
3: q ← InitialPq()
4: repeat
5: mbc ← DeQueue(q)
6: Compute update mbc and residual r = r(mbc)
7: m|bc ← mbc {Perform update.}
8: For all ab, do T (ab, bc)← 0
9: For all cd, do T (bc, cd)← T (bc, cd) + r

10: for all d in {d ∈ N(c)}\b do
11: v ←

∑
a T (ac, cd)

12: Remove any pending update (c, d) from q
13: Add mcd to q with priority v
14: end for
15: until messages converged

function InitialPq ()
1: q ← empty priority queue
2: for all messages (c, d) do {Initialize q}
3: Compute update mcd

4: v ← maxxc |Xc|
∣∣log tc(xc)

∣∣
5: Add mcd to q with priority v
6: end for
7: return q

how to update the residual estimate when a message
mbc(xc) is updated twice before one of its dependents
mcd(xd) is updated even once. In the most general
case, each dependent may have actually seen a differ-
ent version of mbc when it was last updated. Naively
applying the bound (8) would suggest that we retain
the version of mbc as it was when each of its dependents
last saw it. But this becomes somewhat expensive in
terms of memory. Instead, for each pair of messages
(b, c) and (c, d) we maintain a total residual T (bc, cd)
of how much the message mbc has changed since mcd

was last updated. Estimates of the priority of mcd

are always computed using the total residual, rather
than the single-update residual. (This preserves the
upper-bound property of the residual estimates.)

The second question is how to initialize the residual
estimates. Recall that the messages m are initialized
to uniform. Imagine that those initial messages were
obtained by starting with a factor graph in which all
factors ta are uniform, running BP to convergence,
and then modifying the factors to match those in the
actual graph. From this viewpoint, the argument in
Section 3 shows that an upper bound on the residual
from uniform messages is

r(mcd) ≤ max
xc

∣∣∣∣log
tc(xc)
uc(xc)

∣∣∣∣ , (13)

where uc is a normalized uniform factor over the vari-

ables in xc. Therefore, we use this upper bound as the
initial priority of each update.

Finally, we need a way to approximate the residuals
if damping is used. The important point here is that
when a message mbc is sent with damping, even after
the update is performed, the residual mbc is nonzero,
because the full update has not been taken. This can
be handled, however, by the following. Whenever a
damped message mcd is sent, the residual r(mbc) is
computed exactly and mbc is added to the queue with
that priority. (For simplicity, this is not shown in Al-
gorithm 2.)

4.3 APPLICATION TO NON-INFERENCE
DOMAINS

RBP1L has the advantage of being more general: it
can readily be applied to any set of fixed-point equa-
tions, potentially ones that are very different than
those used in approximate inference. On the other
hand, RBP0L appears to be more specific to BP, be-
cause the residual bounds assume that BP updates
are being used. For similar algorithms, such as max-
product BP and GBP, it is likely that the same scheme
would be effective. For a completely different set of
fixed-point equations, applying RBP0L would require
both designing a new method for approximating the
update residuals, and designing an efficient way for
initializing the residual updates. That said, our resid-
ual estimation procedure, which simply sums up the
antecedent residuals, is fairly generic, and thus likely
to perform well in a variety of domains.

5 EXPERIMENTS

In this section, we compare the convergence speed of
RBP0L and RBP1L on both synthetic and real-world
graphs.

5.1 SYNTHETIC DATA

We randomly generate N×N grids of binary variables
with pairwise Potts factors. Each pairwise factor has
the form

tij(xi, xj) =
(

1 e−αij

e−αij 1

)
, (14)

where the equality strength α is sampled uniformly
from [−C,C]. Higher values of C make inference more
difficult. The unary factors have the form ti(xi) =
[1 e−ui], where ui is sampled uniformly from [−C,C].
We generate 50 distributions for C = 5. For smaller
values of C, inference becomes so easy that all sched-
ules performed equally well. For larger values of C,
the same trend holds, but the the convergence rates

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of messages (x1000)

P
er

ce
nt

ag
e

of
 r

un
s

co
nv

er
ge

d

RBP0L
RBP1L

Figure 1: Convergence of RBP0L and RBP1L on syn-
thetic 10× 10 grids with C = 5. The x-axis is number
of messages computed. RBP0L converges faster.

0 10 20 30 40 50

5
10

20
50

10
0

20
0

50
0

10
00

Repetition

N
um

be
r

of
 m

es
sa

ge
s

(x
10

00
)

RBP1L (computed)
RBP1L (performed)
RBP0L

Figure 2: Updates performed by RBP0L and RBP1L
on synthetic data. The horizontal line is the number-
of-messages cutoff. The y-axis is logarithmic.

are much lower. We use the grid size N = 10 so that
exact inference is still feasible. We measure running
time by the number of message updates computed.
This measure closely matches the CPU time. Both
algorithms are considered to have converged when no
pending update has a residual of greater than 10−3.
The algorithms are considered to have diverged if they
have not converged after the equivalent of 1000 com-
plete sweeps of the graph.

The rate of convergence of the different schedules are
shown in Figure 1. We see that RBP0L converges
much more rapidly than RBP1L, although both even-
tually converge on the same percentage of networks.

Figure 2 shows the number of messages required for
convergence for each sampled model. Each integer on
the x-axis represents a different randomly-generated
model, sorted by the number of messages required by
RBP1L. Thus, the model at x-index 0 is the easiest
model for RBP1L, and so on. Each curve is the num-
ber of messages required, as a function of this rank.
The horizontal line is the number-of-messages cutoff,
so points that exceed that line represent models for
which BP did not converge. The y-axis is logarithmic.

RBP0L computes on average half as many messages as
RBP1L. RBP0L uses fewer messages than RBP1L in
46 of the 50 sampled models. In three of the sampled
models, RBP1L converges but RBP0L does not, which
appear in Figure 2 as the peaks where the RBP0L
curve is the only one that touches the horizontal line.
In three other models, RBP0L converges but RBP1L
does not, which appear as the valleys where RBP0L
does not touch the horizontal line, but the other curves
do. The dashed curve in the figure shows the num-
ber of updates actually performed by RBP1L. On av-
erage, 38% of the updates computed by RBP1L are
never performed. Surprisingly, RBP0L performs fewer
updates than RBP1L performs; that is, it is more ef-
ficient even if wasted updates are not counted against
RBP1L. This may be a beneficial effect of our choice
of initial residual estimates.

Finally, we measure the accuracy of the marginals for
RBP0L and RBP1L. For both schedules, we measure
the average per-variable KL from the exact distribu-
tion to the BP belief. When both schedules converge,
the average per-variable KL is nearly identical: the
mean absolute difference, averaged over the 50 ran-
dom models, is 0.0038.

5.2 NATURAL-LANGUAGE DATA

Finally, we consider a model with many irregular
loops, which is the skip chain conditional random field
introduced by Sutton and McCallum [2004]. This
model incorporates certain long-distance dependencies

Messages sent Accuracy

TRP 3 079 570 97.6

RBP0L 839 250 97.4

RBP1L 2 685 702 97.3

Table 1: Performance of BP schedules on skip-chain
test data.

between word labels into a linear-chain model for in-
formation extraction. The resulting networks contain
many loops of varying sizes, and exact inference using
a generic junction-tree solver is intractable.

The task is to extract information about seminars from
email announcements. Our data set is a collection of
485 e-mail messages announcing seminars at Carnegie
Mellon University. The messages are annotated with
the seminar’s starting time, ending time, location, and
speaker. This data set is due to Freitag [1998], and has
been used in much previous work.

Often the speaker is listed multiple times in the same
message. For example, the speaker’s name might be
included both near the beginning and later on, in a
sentence such as “If you would like to meet with Pro-
fessor Smith. . . ” It can be useful to find both such
mentions, because different information can be in the
surrounding context of each mention: for example, the
first mention might be near an institution affiliation,
while the second mentions that Smith is a professor.

To increase recall of person names, we wish to exploit
the fact that when the same word appears multiple
times in the same message, it tends to have the same
label. In a CRF, we can represent this by adding edges
between output nodes (yi, yj) when the words xi and
xj are identical and capitalized.

The emails on average contain 273.1 tokens, but the
maximum is 3062 tokens. The messages have an av-
erage of 23.5 skip edges, but the maximum is 2260,
indicating that some networks are connected densely.

We generate networks as follows. Using ten-fold cross-
validation with a 50/50 train/test split, we train a
skip-chain CRF using TRP until the model parameters
converge. Then we evaluate the RBP0L, RBP1L, and
TRP on the test data, measuring the number of mes-
sages sent, the running time, and the accuracy on the
test data. As in the last section, RBP0L and RBP1L
are considered to have converged if no pending update
has a residual of more than 10−3. TRP is considered
to have converged if no update performed on the pre-
vious iteration resulted in a residual of greater than
10−3. In all cases, the trained model parameters are
exactly the same; the inference algorithms are varied

only at test time, not at training time.

Table 1 shows the performance of each of the message
schedules, averaged over the 10 folds. RBP0L uses
one-third of the messages as RBP1L, and one-fifth of
the CPU time, but has essentially the same accuracy.
Also, RBL0L uses 27% of the messages used by TRP.

In our implementation, the CPU time required per
message update is much higher for the RBP sched-
ules than for TRP. The total running time for RBP0L
is 66s, compared to 110s for TRP and 321s for RBP1L.
This is partially because of the overhead in maintain-
ing the priority queues and residual estimates, but also
this is because our TRP implementation is a highly op-
timized one that we have used in much previous work,
whereas our RBP implementations have more room for
low-level optimization.

5.3 ERROR ESTIMATES

The message residual is an intuitive error measure to
use for scheduling, but there are many others that are
conceivable. In this section, we compare different er-
ror measures to evaluate how reliable they are at pre-
dicting the next message to send. Ideally, we would
evaluate a priority function for messages by whether
higher priority messages actually reduces the computa-
tion time required for convergence. But it is extremely
difficult to compute this, so we instead measure the
distance to the converged message values, as follows.

We generate a synthetic grid as in Section 5.1. (The
graphs here are from a single sampled model, but
different samples result in qualitatively similar re-
sults.) Then, we run RBP0L on the grid to conver-
gence, yielding a set of converged messages m̃. Fi-
nally, we run RBP0L again on the same grid, with-
out making use of m̃. After each message update of
RBP0L m

(k)
cd 7→ mcd, we measure: (a) The residual of

the errors e(m(k)
cd ,mcd), e(m(k)

cd , m̃cd), and e(mcd, m̃cd)
(b) The dynamic range of the same errors (c) The
KL divergences KL(m(k)

cd ‖mcd), KL(m(k)
cd ‖m̃cd), and

KL(mcd‖m̃cd); (d) The change in Bethe energy
log ZBP(m)− log ZBP(m(k)).

Thus we can measure how well each of the error metrics
predicts the distance to convergence r(e(mcd, m̃cd) −
r(e(m(k)

cd , m̃cd). This is shown in Figure 3. Each plot in
that figure shows a different distance measure between
messages: from top left, they are message residual, er-
ror dynamic range, KL divergence, and difference in
Bethe energy. Each point in the figures represents a
single message update. In all figures, the x-axis shows
the distance between the message m

(k)
cd at the previ-

ous iteration and the value m()(k + 1) at the current
iteration. The y-axis shows the change in distance to

−2 0 2 4 6

−
4

−
2

0
2

4

Residual (new, old)

R
es

id
ua

l(n
ew

, c
vg

)
−

 R
es

id
ua

l(o
ld

, c
vg

)

−2 0 2 4 6

−
4

−
2

0
2

4

Error dynamic range (new, old)

R
es

id
ua

l(n
ew

, c
vg

)
−

 R
es

id
ua

l(o
ld

, c
vg

)

−2 0 2 4 6

−
4

−
2

0
2

4

KL (old, new)

R
es

id
ua

l(n
ew

, c
vg

)
−

 R
es

id
ua

l(o
ld

, c
vg

)

−4 −2 0 2 4

−
4

−
2

0
2

4

logZ_Bethe (new) − logZ_Bethe (old)

R
es

id
ua

l(n
ew

, c
vg

)
−

 R
es

id
ua

l(o
ld

, c
vg

)

Figure 3: Comparison of error metrics in predicting the distance to convergence. (See text for explanation.)

the converged messages, that is, how much closer the
update at k + 1 brought the message to its converged
value. We measure this as the difference between the
residuals e(m(k+1)

cd , m̃cd) and e(m(k)
cd , m̃cd). Negative

values of this measure are better, because they mean
that the distance to the converged messages has de-
creased due to the update. An ideal graph would be a
line with negative slope.

Both the message residual and the dynamic error range
display a clear upper-bounding property on the abso-
lute value. Also, the points are somewhat clustered
along the diagonal, indicating some kind of a linear
relationship between the single-message distance and
the distance to convergence. The single-message dis-
tance does not seem to do well, however, at predict-
ing in which direction the message will change, that
is, closer or farther from its converged value. Qualita-
tively, the residual and the error range seem to perform
similarly at predicting the distance to the converged
messages, but in preliminary experiments, using the
error range in a one-lookahead schedule seemed to con-
verge slightly slower than using the residual.

The message KL also seems to do a poor job of pre-
dicting the distance to the converged message. More

surprisingly, the difference in Bethe energy is almost
completely uninformative about the distance to con-
verged messages. This suggests an intriguing expla-
nation of the slow converge of gradient methods for
optimizing the Bethe energy: perhaps the objective
function itself is simply not good at measuring what
we care about. It is possible that the Bethe approxi-
mation may be accurate at convergence but still not be
accurate outside of the constraint set, that is, when the
messages are not locally consistent. This is precisely
the situation that occurs during message scheduling.
For this reason, it may be more revealing to look at
the Lagrangian of the Bethe energy rather than the
objective function itself.

6 CONCLUSION

In this paper, we have presented RBP0L, a new dy-
namic schedule for belief propagation that schedules
messages based on a upper-bound on their residual.
On both synthetic and real-world data, we show that
it converges faster than both RBP1L, a recently-
proposed dynamic schedule, and than TRP, with com-
parable accuracy. It would be interesting to explore
whether the residual estimation technique in RBP0L

is equally effective for other inference algorithms, such
as EP, GBP, or whether the residual estimation tech-
nique would require significant adaptation. In contin-
uous spaces, it may be that the message residual itself
is not a good measure for scheduling, because it gives
equal weight to all areas of the domain, even those
with low probability. The KL divergence may be more
appropriate.

A Appendix

In this appendix, we prove the upper bound (8) given
in Section 3. This is

r(mcd) ≤
∑

{b∈N(c)}

r(mbc) (15)

To justify this, we show that the residual is both sub-
additive and contracts under the message update, fol-
lowing Ihler et al. [2004].

To show subadditivity, define the message product
Mbc(xc) =

∏
{b∈N(c)}\d mbc(xc), and define M

(k)
bc sim-

ilarly. Also, define the residual r(Mbc) as

r(Mbc) = max
xc

∣∣∣∣∣log
Mbc(xc)

M
(k)
bc (xc)

∣∣∣∣∣ (16)

Then we have

r(Mbc) = max
xc

∣∣∣∣∣∑
b

log
mbc(xc)

m
(k)
bc (xc)

∣∣∣∣∣
≤

∑
b

max
xc

∣∣∣∣∣log
mbc(xc)

m
(k)
bc (xc)

∣∣∣∣∣ =
∑

b

r(mbc),

which follows from the subadditivity of absolute value,
and an increase in the degrees of freedom of the max-
imization.

To show contraction under the message update, we
apply the fact that

f1 + f2

g1 + g2
≤ max

{
f1

g1
,
f2

g2

}
. (17)

This directly yields

r(mcd) = max
xcd

∣∣∣∣∣log

∑
xc\xcd

tc(xc)Mbc∑
xc\xcd

tc(xc)M
(k)
bc

∣∣∣∣∣ (18)

≤ max
xcd

∣∣∣∣∣log max
xc\xcd

tc(xc)Mbc

tc(xc)M
(k)
bc

∣∣∣∣∣ (19)

≤ max
xcd

max
xc\xcd

∣∣∣∣∣log
Mbc(xc)

M
(k)
bc (xc)

∣∣∣∣∣ (20)

= r(Mbc). (21)

Acknowledgements

We thank the anonymous reviewers for detailed and helpful
comments. This work was supported in part by the Center
for Intelligent Information Retrieval and in part by The
Central Intelligence Agency, the National Security Agency
and National Science Foundation under NSF grants #IIS-
0326249 and #IIS-0427594. Any opinions, findings and
conclusions or recommendations expressed in this material
are the authors’ and do not necessarily reflect those of the
sponsor.

References

Gal Elidan, Ian McGraw, and Daphne Koller. Residual be-
lief propagation: Informed scheduling for asynchronous
message passing. In Conference on Uncertainty in Arti-
ficial Intelligence (UAI), 2006.

Dayne Freitag. Machine Learning for Information Extrac-
tion in Informal Domains. PhD thesis, Carnegie Mellon
University, 1998.

A. T. Ihler, J. W. Fisher III, and A. S. Willsky. Message
errors in belief propagation. In Advances in Neural In-
formation Processing Systems (NIPS), 2004.

Michael I. Jordan, Zoubin Ghahramani, Tommi Jaakkola,
and Lawrence K. Saul. An introduction to variational
methods for graphical models. In Michael I. Jordan, ed-
itor, Learning in Graphical Models, pages 183–233. MIT
Press, Cambridge, MA, 1999.

F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE Transac-
tions on Information Theory, 47(2):498–519, 2001.

Thomas Minka. Expectation propagation for approximate
Bayesian inference. In 17th Conference on Uncertainty
in Artificial Intelligence (UAI), pages 362–369, 2001.

Judea Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kauf-
mann, 1988.

Charles Sutton and Andrew McCallum. Collective seg-
mentation and labeling of distant entities in information
extraction. In ICML Workshop on Statistical Relational
Learning and Its Connections to Other Fields, 2004.

Martin Wainwright, Tommi Jaakkola, and Alan S. Willsky.
Tree-based reparameterization for approximate estima-
tion on graphs with cycles. Advances in Neural Infor-
mation Processing Systems (NIPS), 2001.

M. Welling and Y.W. Teh. Belief optimization for binary
networks: a stable alternative to loopy belief propaga-
tion. In Proceedings of the International Conference on
Uncertainty in Artificial Intelligence, volume 17, 2001.

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss.
Generalized belief propagation. In Advances in Neural
Information Processing Systems (NIPS), 2000.

A. L. Yuille and A. Rangarajan. The concave-convex pro-
cedure (CCCP). In T. G. Dietterich, S. Becker, and
Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14, pages 1033–1040, Cambridge,
MA, 2001. MIT Press.

