
Journal of Machine Learning Research ?? (2008) ??-?? Submitted 04/08; Published ??/??

Pachinko Allocation:
Scalable Mixture Models of Topic Correlations

Wei Li weili@cs.umass.edu

Department of Computer Science
University of Massachusetts
Amherst, MA 01003, USA

Andrew McCallum mccallum@cs.umass.edu

Department of Computer Science
University of Massachusetts
Amherst, MA 01003, USA

Editor: ??

Abstract

Statistical topic models are increasingly popular tools for summarization and manifold
discovery in discrete data. However, the majority of existing approaches capture no or
limited correlations between topics. In this paper, we propose the pachinko allocation model
(PAM), which captures arbitrary topic correlations using a directed acyclic graph (DAG).
The leaves of the DAG represent individual words in the vocabulary, while each interior
node represents a correlation among its children, which may be words or other interior
nodes (topics). As we have observed, topic correlations are usually sparse. By taking
advantage of this property, we develop a highly-scalable inference algorithm for PAM.
In our experiments, we show improved performance of PAM in document classification,
likelihood of held-out data, topical keyword coherence, and the ability to support a great
number of fine-grained topics in very large datasets.
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1. Introduction

A topic model defines a probabilistic procedure to generate documents as mixtures of a
low-dimensional set of topics. Each topic is a multinomial distribution over words and the
highest probability words briefly summarize the themes in the document collection. As an
effective tool to dimensionality reduction and semantic information extraction, topic models
have been used to analyze large amounts of textual information in many tasks, including lan-
guage modeling, document classification, information retrieval, document summarization,
data mining and social network analysis (Gildea and Hofmann (1999); Tam and Schultz
(2005); Azzopardi et al. (2004); Wei and Croft (2006); Kim et al. (2005); Tuulos and Tirri
(2004); Rosen-Zvi et al. (2004); McCallum et al. (2005)). In addition to textual data (in-
cluding news articles, research papers and emails), they have also been applied to images,
biological findings and other non-textual multi-dimensional discrete data (Sivic et al. (2005);
Zheng et al. (2006)).
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While topic models capture correlation patterns in words, the majority of existing ap-
proaches capture no or limited correlations among topics themselves. However, such corre-
lations are common and complex in real-world data. The simplified assumptions of inde-
pendent topics reduce the abilities of these models to discover large numbers of fine-grained,
tightly coherent topics. For example, latent Dirichlet allocation (LDA) (Blei et al. (2003))
samples the per-document mixture proportions of topics from a single Dirichlet distribution
and thus does not model topic correlations. The correlated topic model (CTM) (Blei and
Lafferty (2006)) uses a logistic normal distribution instead of a Dirichlet. The parameters of
this prior include a covariance matrix in which each entry specifies the covariance between
a pair of topics. Therefore, topic occurrences are no longer independent from each other.
However, CTM is limited to pairwise correlations only, and the number of parameters in
the covariance matrix grows as the square of the number of topics.

In this paper, we present the pachinko allocation model (PAM), which uses a directed
acyclic graph (DAG) structure to represent and learn arbitrary-arity, nested, and possibly
sparse topic correlations. In PAM topics can be not only distributions over words, but
also distributions over other topics. The model structure consists of an arbitrary DAG,
in which each leaf node is associated with a word in the vocabulary, and each non-leaf
“interior” node corresponds to a topic, having a distribution over its children. An interior
node whose children are all leaves would correspond to a traditional topic. But some interior
nodes may also have children that are other topics, thus representing a mixture over topics.
With many such nodes, PAM therefore captures not only correlations among words (as in
LDA), but also correlations among topics themselves. We also present recent new work
in the construction of sparse variants on PAM that provide significantly faster parameter
estimation times.

For example, consider a document collection that discusses four topics: cooking, health,
insurance and drugs. The cooking topic co-occurs often with health, while health, insurance
and drugs are often discussed together. A DAG can describe this kind of correlation. For
each topic, we have one node that is directly connected to the words. There are two
additional nodes at a higher level, where one is the parent of cooking and health, and the
other is the parent of health, insurance and drugs.

In PAM each interior node’s distribution over its children could be parameterized arbi-
trarily. We will investigate various options including multinomial distribution and Dirichlet
compound multinomial (DCM). Given a DAG and a parameterization, the generative pro-
cess samples a topic path for each word. It begins at the root of the DAG, sampling one of
its children according to the corresponding distribution, and so on sampling children down
the DAG until it reaches a leaf, which yields a word. The model is named for pachinko
machines—a game popular in Japan, in which metal balls bounce down around a complex
collection of pins until they land in various bins at the bottom.

Note that the DAG structure in PAM is extremely flexible. It could be a simple tree
(hierarchy), or an arbitrary DAG, with cross-connected edges, and edges skipping levels.
The nodes can be fully or sparsely connected. The structure could be fixed beforehand
or learned from the data. PAM provides a general framework for which several existing
models can be viewed as special cases such as LDA and CTM. We present a variety of
model structures in Figure 1.
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Figure 1: Model structures for four topic models. Each rectangle is associated with a word
and each circle corresponds to a topic, where it has a distribution over its children
specified by the arrows. (a) LDA: This model samples a multinomial over topics
for each document, and then generates words from the topics. (b) CTM: Each
topic at the lower level is a multinomial distribution over words and for each
pair of them, there is one additional topic that has a distribution over them. (c)
Four-Level PAM: A four-level hierarchy consisting of a root, a set of super-topics,
a set of sub-topics and a word vocabulary. (d) PAM: An arbitrary DAG structure
to encode the topic correlations. Each interior node is considered a topic and has
a distribution over its children.

Since PAM captures complex topic correlations with a rich structure, its computational
cost is increased accordingly. As we will explain later, the running time of a naive imple-
mentation of our inference algorithm is proportional to the product of the corpus size and
the numbers of nodes at each level of the DAG. In addition, it requires more memory space
since we need to store the distribution of every interior node over its children. This makes it
challenging to use PAM in real-world applications such as information retrieval, where the
datasets contain hundreds of thousands of documents and many topics. Below in Section
3, we address the efficiency issue and propose a highly-scalable approximation.

As we have observed in our experiments, the connectivity structure discovered by PAM
is usually sparse. It is especially true for very large datasets with a lot of topics, most of
which only contain small proportions of the word vocabulary. This property suggests more
efficient inference and training algorithms by considering only a small subset of topics to
sample a word in a document. Furthermore, we use a sparse representation to store the
distributions of interior nodes over their children. In this way, we are able to dramatically
reduce the time and space complexity.

Using text data from newsgroups and various research paper corpora, we show improved
performance of PAM in three different tasks, including topical word coherence assessed by
human judges, likelihood on held-out test data, and document classification accuracy. The
approximation with sparsity is applied to large datasets with improved efficiency.
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V word vocabulary {w1, w2, ..., wn}
T a set of topics {t1, t2, ..., ts}
r the root, a special topic in T
gi(αi) Dirichlet distribution associated with topic ti
d a document
θ

(d)
ti

multinomial distribution sampled from topic ti for document d
zwi the ith topic sampled for word w

Table 1: Notation in PAM.

2. Pachinko Allocation Model

In this section, we present the pachinko allocation model (PAM). In addition to the general
framework, we will focus on one special setting, describing the generative process, inference
algorithm and parameter estimation method.

2.1 General Framework

The notation for the pachinko allocation model is summarized in Table 2.1. PAM connects
words in V and topics in T with a DAG structure, where topic nodes occupy the interior
levels and the leaves are words. Several possible model structures are shown in Figure 1.
Each topic ti is associated with a distribution gi over its children. In general, gi could be any
distribution over discrete variables, such as Dirichlet compound multinomial and logistic
normal.

First we describe the generative process for PAM with an arbitrary DAG, assuming
that the distributions associated with topics are Dirichlet compound multinomials. Each
distribution gi is parameterized with a vector αi, which has the same dimension as the
number of children in ti.

To generate a document d, we use the following two-step process:

1. Sample θ(d)
t1

, θ(d)
t2

, ..., θ(d)
ts from g1(α1), g2(α2), ..., gs(αs), where θ(d)

ti
is a multinomial

distribution of topic ti over its children.

2. For each word w in the document,

(a) Sample a topic path zw of length Lw: < zw1, zw2, ..., zwLw >. zw1 is always the
root r and zw2 through zwLw are topic nodes in T . zwi is a child of zw(i−1) and

it is sampled according to the multinomial distribution θ
(d)
zw(i−1)

.

(b) Sample word w from θ
(d)
zwLw .

Following this process, the joint probability of generating a document d, the topic as-
signments z(d) and the multinomial distributions θ(d) is

P (d, z(d), θ(d)|α) =
s∏
i=1

P (θ(d)
ti
|αi)×

∏
w

(
Lw∏
i=2

P (zwi|θ(d)
zw(i−1)

)P (w|θ(d)
zwLw

))
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Integrating out θ(d) and summing over z(d), we calculate the marginal probability of a
document as:

P (d|α) =
∫ s∏

i=1

P (θ(d)
ti
|αi)×

∏
w

∑
zw

(
Lw∏
i=2

P (zwi|θ(d)
zw(i−1)

)P (w|θ(d)
zwLw

))dθ(d)

Finally, the probability of generating a whole corpus is the product of the probability
for every document:

P (D|α) =
∏
d

P (d|α)

2.2 Four-Level PAM

In PAM, both the DAG structure and parameterization can be very flexible. We will focus
on one special case here. It is a four-level hierarchy consisting of one root topic r, s topics
at the second level T = {t1, t2, ..., ts}, s′ topics at the third level T ′ = {t′1, t′2, ..., t′s′} and
words at the bottom. We call the topics at the second level super-topics and the ones at
the third level sub-topics. The root is connected to all super-topics, super-topics are fully
connected to sub-topics and sub-topics are fully connected to words (Figure 1(c)).

We use two different distributions for the topics in this structure. In addition to a
set of Dirichlet compound multinomials associated with the root gr(αr) and super-topics
{gi(αi)}si=1, the sub-topics are modeled with fixed multinomial distributions {φt′j}

s′
j=1, sam-

pled once for the whole corpus from a single Dirichlet distribution g(β). The corresponding
graphical model is shown in Figure 2. The generative process for a document d is as follows:

1. Sample θ(d)
r from the root gr(αr), where θ(d)

r is a multinomial distribution over super-
topics.

2. For each super-topic ti, sample θ(d)
ti

from gi(αi), where θ(d)
ti

is a multinomial distribu-
tion over sub-topics.

3. For each word w in the document,

(a) Sample a super-topic zw from θ
(d)
r .

(b) Sample a sub-topic z′w from θ
(d)
zw .

(c) Sample word w from φz′w .

As we can see, both the model structure and generative process for this special setting
are similar to LDA. The major difference is that it has one additional layer of super-topics
modeled with Dirichlet compound multinomials, which is the key component capturing
topic correlations here. Another way to interpret this structure is that given the sub-topics,
each super-topic is essentially an individual LDA. Therefore, it can be viewed as a mixture
over a set of LDAs.

Following this process, the joint probability of generating a document d, the super-topic
assignments z(d), the sub-topic assignments z′(d) and the multinomial distributions θ(d) is

P (d, z(d), z′(d), θ(d)|α, φ) = P (θ(d)
r |αr)

s∏
i=1

P (θ(d)
ti
|αi)×

∏
w

(P (zw|θ(d)
r )P (z′w|θ(d)

zw )P (w|φz′w))
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Figure 2: Graphical model for four-level PAM. For each document, PAM samples multino-
mials θ from the Dirichlet distributions at the root and the super-topics. Then
for each word w, PAM samples a super-topic z and a sub-topic z′ from θ and
then the word from the multinomial distribution φz′ associated with z′.

Integrating out θ(d) and summing over z(d) and z′(d), we calculate the marginal proba-
bility of a document as:

P (d|α, φ) =
∫
P (θ(d)

r |αr)
s∏
i=1

P (θ(d)
ti
|αi)×

∏
w

∑
zw,z′w

(P (zw|θ(d)
r )P (z′w|θ(d)

zw )P (w|φz′w))dθ(d)

The probability of generating a whole corpus is the product of the probability for every
document, integrating out the multinomial distributions for sub-topics φ:

P (D|α, β) =
∫ s′∏

j=1

P (φt′j |β)
∏
d

P (d|α, φ)dφ

2.3 Inference

The hidden variables in the four-level PAM include the sampled multinomial distributions θ,
φ and topic assignments z(d), z′(d). Since Dirichlet priors are conjugate to the multinomial
distributions, we can calculate the joint distribution of P (D, z, z′) by integrating out θ
and φ. However, for the purpose of inference, we still need to calculate the conditional
distribution

P (z, z′|D) =
P (D, z, z′)
P (D)

Since it requires summing over all possible topic assignments to obtain the marginal
distribution of P (D), it is not feasible to perform exact inference in this model. One of
the standard approximation techniques for models in the LDA family is Gibbs sampling.
For an arbitrary DAG, we need to sample a topic path for each word given other variable
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assignments, enumerating all possible paths and calculating their conditional probabilities.
In the special four-level PAM structure, each path contains the root, a super-topic and a sub-
topic. Since the root is fixed, we only need to jointly sample the super-topic and sub-topic
assignments for each word, based on their conditional distribution given observations and
other assignments. In order to calculate this probability, we start with the joint distribution
of the documents and topic assignments:

P (D, z, z′|α, β) = P (z|α)× P (z′|z, α)× P (D|z′, β)

By integrating out the sampled multinomials, we have

P (z|α) =
∫ ∏

d

P (θ(d)
r |αr)

∏
w

P (zw|θ(d)
r )dθ

=
(

Γ(
∑s

i=1 αri)∏s
i=1 Γ(αri)

)|D|∏
d

∏s
i=1 Γ(n(d)

i + αri)

Γ(n(d)
r +

∑s
i=1 αri)

P (z′|z, α) =
∫ ∏

d

(
s∏
i=1

P (θ(d)
ti
|αi)

∏
w

P (z′w|θ(d)
zw ))dθ

=
s∏
i=1


(

Γ(
∑s′

j=1 αij)∏s′

j=1 Γ(αij)

)|D|∏
d

∏s′

j=1 Γ(n(d)
ij + αij)

Γ(n(d)
i +

∑s′

j=1 αij)


P (D|z′, β) =

∫ s′∏
j=1

P (φt′j |β)
∏
d

(
∏
w

P (w|φz′w))dφ

=
(

Γ(
∑n

k=1 βk)∏n
k=1 Γ(βk)

)s′ s′∏
j=1

∏n
k=1 Γ(njk + βk)

Γ(nj +
∑s′

k=1 βk)

Here n(d)
r is the number of occurrences of the root r in document d, which is equivalent

to the number of tokens in the document; n(d)
i is the number of occurrences of super-topic

ti in d; n(d)
ij is the number of times that sub-topic t′j is sampled from the super-topic ti

in d; nj is the total number of occurrences of sub-topic t′j in the whole corpus and njk is
the number of occurrences of word wk in sub-topic t′j . There are three types of Dirichlet
parameters: αr is an s-dimensional vector associated with the root, αi is an s′-dimensional
vector associated with super-topic ti and β is the prior for all sub-topics. Finally, we obtain
the Gibbs sampling distribution for word w = wk in document d as

P (zw = ti, z
′
w = t′j |D, z−w, z′−w, α, β) ∝ P (w, zw, z′w|D−w, z−w, z′−w, α, β)

=
P (D, z, z′|α, β)

P (D−w, z−w, z′−w|α, β)

=
n

(d)
i + αri

n
(d)
r +

∑s
i=1 αri

n
(d)
ij + αij

n
(d)
i +

∑s′

j=1 αij

njk + βk
nj +

∑n
k=1 βk

.

The notation −w indicates all observations or topic assignments except word w. Also
the numbers of occurrences do not include w or its assignments. With this distribution,
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we jointly sample a super-topic and sub-topic pair for every word in every document. As
we can see, the time complexity of each Gibbs sampling iteration is linear with the total
number of tokens in the training corpus and the size of the sample space for each token,
i.e. the product of the numbers of super-topics and sub-topics.

2.4 Parameter Estimation

Note that in the Gibbs sampling equation, we assume that the Dirichlet parameters α are
given. While LDA can produce reasonable results with a simple uniform Dirichlet, we
have to learn these parameters for the super-topics in PAM since they capture different
correlations among sub-topics. As for the root, we assume a fixed Dirichlet parameter. To
learn α, we could use maximum likelihood or maximum a posteriori estimation. However,
since there are no closed-form solutions for these methods and we wish to avoid iterative
methods for the sake of simplicity and speed, we approximate it by moment matching
(Casella and Berger (2001)). In each iteration of Gibbs sampling, the parameters are
updated according to the following rules:

meanij =
1
Ni
×
∑
d

n
(d)
ij

n
(d)
i

varij =
1
Ni
×
∑
d

(
n

(d)
ij

n
(d)
i

−meanij)2

mij =
meanij × (1−meanij)

varij
− 1

αij =
meanij

exp(
∑
j log(mij)

s′−1 )

For each super-topic ti and sub-topic t′j , we first calculate the sample mean meanij

and sample variance varij . n
(d)
ij and n

(d)
i are the same as defined before. If n(d)

i = 0 for
a document d, it will be ignored. Ni is the total number of documents with non-0 counts
of super-topic ti. Then we estimate αij , the jth component in αi from sample means and
variances.

Smoothing is important when estimating the Dirichlet parameters with moment match-
ing. From the equations above, we can see that when one sub-topic t′j does not get sampled
from super-topic ti in one iteration, αij will become 0. Furthermore from the Gibbs sam-
pling equation, we know that this sub-topic will never have the chance to be sampled again
by this super-topic. In order to avoid this situation, we introduce a smoothing factor by as-
suming a pseudo-document where each pair of super-topic and sub-topic is sampled exactly
once:

meanij =
1

(Ni + 1)
×

(∑
d

n
(d)
ij

n
(d)
i

+
1
s′

)

varij =
1

(Ni + 1)
×

(∑
d

(
n

(d)
ij

n
(d)
i

−meanij)2 + (
1
s′
−meanij)2

)
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3. Improving Efficiency in Topic Models

Many of the real-world applications for which topic models can be useful involve very large
document collections. One example is information retrieval (IR). An IR system aims to
understand a user’s information request in the form of a query and extracts a set of relevant
documents from its corpus. As queries are usually short lists of keywords, their relevant
documents may not contain the exact terms. Therefore, it is more desirable to compare them
in a low-dimensional space than direct word matching. Word clustering techniques have
been used in the past to organize words into different groups based on co-occurrence patterns
(Liu and Croft (2004)). Similarly, topic models can also be applied to discover latent
concepts in document collections. They provide not only a low-dimensional representation
for the words, but also a probabilistic framework to evaluate relevance between queries and
documents. In the recent work by Wei and Croft (Wei and Croft (2006)), LDA has been
used for ad-hoc retrieval and achieved improved performance over standard query likelihood
model and a cluster-based approach.

While LDA can be applied to IR collections with reasonable efficiency, it is not practical
to directly apply PAM with richer structures to very large datasets that consist of hundreds
of thousands of documents. In this section, we will analyze the time and space complexity
in Gibbs sampling and propose a more efficient training algorithm. With this approxima-
tion, we can reduce the training time of LDA by more than 50% without decreasing its
performance in IR tasks. It also allows us to discover topic correlations in large collections
with the sparse PAM.

3.1 Complexity of Gibbs Sampling

In general, the running time of one Gibbs sampling iteration is determined by
∑

i V (xi),
where xi is an unobserved variable and V (xi) is the size of its value space. In the case
of PAM, V (xi) equals the number of topic paths for each token. For the four-level DAG
structure, we assume that the super-topics are fully connected with sub-topics and sub-
topics are fully connected with words. Therefore, the number of topic paths is the product
of the numbers of super-topics (s) and sub-topics (s′). The total running time for Gibbs
sampling is then linear with s, s′, L and I, where L is the number of tokens in the corpus
and I is the number of iterations. Compared to an LDA with s′ topics, the four-level PAM
will be s′ times slower.

Another source of increased complexity in PAM is memory usage. In addition to the per-
corpus distribution of every sub-topic over words, we also need to store the per-document
distributions of the root over super-topics and super-topics over sub-topics. So the space
complexity is O(s′n+ sN + ss′N), where n is the vocabulary size and N is the number of
documents.

3.2 Sparse PAM

We now present several techniques to build a sparse PAM.

9
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Figure 3: An example of the sparse array representation. Each block contains either 0 or
l1 items.

3.2.1 Sparse Representation

The main usage of memory is to store two tables: n(d)
ij , the number of times sub-topic tj

is sampled from super-topic ti in document d; and njk, the number of occurrences of word
wk in sub-topic tj . As we have observed, a large proportion of the table entries are 0s. For
the IR collections in our experiments, the average number of tokens in each document is
around 200, which is much less than the number of sub-topics we usually use. Therefore,
most documents only contain a small number of sub-topics, and the table n(d)

ij is extremely
sparse. Similarly, when we have a large vocabulary and a lot of sub-topics, the topic-word
table njk is also sparse. To take advantage of this property and reduce memory complexity,
we use a sparse representation to store these tables.

The basic idea is to divide an array into different blocks. If one block contains all 0’s, we
do not allocate memory for it. One example is shown in Figure 3. There are two parameters
in this representation: l1 is the size of the blocks and l2 is the number of blocks. Therefore it
can store l1× l2 numbers. When accessing the ith number in the original array, we calculate
the block index as i/l1 and the within-block index as i%l1.

3.2.2 Edge Pruning

In addition to sparsity in these tables, we have also observed another kind of sparsity in
the sample space. When sampling a topic path for a token, we need to consider all (super-
topic, sub-topic) pairs. Because of the Dirichlet priors, every pair has a non-0 probability.
However, some pairs are much less likely to be sampled than others. In our experiments,
after several iterations of Gibbs sampling, we can obtain an average of 98% of probability
mass by considering only topic pairs that consist of

• super-topic ti, if n(d)
i > 0;

10
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• sub-topic t′j , if there exists ti such that n(d)
ij > 0;

• sub-topic t′j , if njk > 0 for the current token wk.

This provides us with a simple way to dramatically reduce the sample space without
losing too much probability. However, there are some disadvantages with this pruning
strategy. For example, if a super-topic is not assigned to any word in a document, it will
never be considered for that document again. This is not desirable because our initialization
is usually random. Our solution to this problem is to alternate accurate and approximate
samplings for each document. The prunning algorithm is described below.

For every document d,

1. Let C = ∅, C ′ = ∅;

2. For every super-topic ti,
If n(d)

i > 0, C = C ∪ {ti};

3. For every sub-topic t′j ,

If there exists ti such that n(d)
ij > 0, C ′ = C ′ ∪ {t′j};

4. For every word w = wk in the document,

(a) Remove the current topic assignments for w;

(b) Let C ′w = ∅;
(c) For every sub-topic t′j ,

If njk > 0, C ′w = C ′w ∪ {t′j};
(d) C ′w = C ′w ∪ C ′;
(e) Let X = C × C ′w;

(f) Sample the new topic assignments < ti, t
′
j > from X;

(g) Update C, C ′ and the tables.

3.2.3 Sparse Initialization

So far we have presented two methods to reduce complexity in running time and memory,
both of which depending on the sparsity in topic connections. However, when we initialize
Gibbs samplers in a random way, the sparsity is not very obvious at the beginning. There-
fore to further accelerate the training procedure, we use a different initialization method.
We start with a very small number of documents and run Gibbs sampling for a few iter-
ations until the topic connections become sparse. Then we gradually add more and more
documents. Note that we do not randomly sample the topics for a newly added document.
They are treated the same way as other documents except that the pruning strategy is a
little different.

For a newly added document d,

1. Let C = all super-topics;

2. For every word w = wk in the document,

11
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(a) If wk is a new word, let C ′w = all sub-topics;

(b) Else

i. Let C ′w = ∅;
ii. For every sub-topic t′j ,

If njk > 0, C ′w = C ′w ∪ {t′j};

(c) Let X = C × C ′w;

(d) Sample the new topic assignments < ti, t
′
j > from X;

(e) Update the tables.

3.2.4 Multiple Markov Chains

The pruning algorithm significantly decreases one factor in the training time of PAM, i.e.
the number of topic paths for each token. It is also possible to reduce the number of it-
erations by using multiple Markov chains (Wei and Croft (2006)). In our experiments, we
initialize several Gibbs samplers with different randomization seeds. The average probabil-
ities from multiple chains provide better performance than individual ones.

3.3 PAM-based Retrieval

With the sparse approximations, now we are able to apply PAM to ad-hoc retrieval. The
basic framework we use here is the query likelihood (QL) model. For each document d, we
first estimate a language model—a distribution over words {P (w|d)}. Then the documents
are ranked according to their likelihoods of generating a query q =< q1, q2, ..., ql >:

P (q|d) =
l∏

i=1

P (qi|d)

The query terms are assumed to be conditionally independent from each other given the
document model. One simple way of estimating P (w|d) is maximum likelihood estimation
(MLE). In other words,

PMLE(w|d) = n(d)
w /n(d),

where n(d)
w is the number of occurrences of w in d and n(d) is the total number of tokens in

d. As the distribution learned by MLE is usually sparse, we use the Dirichlet smoothing
(Zhai and Lafferty (2001)) to obtain

PQL(w|d) =
n(d)

n(d) + µ
PMLE(w|d) +

µ

n(d) + µ
PMLE(w)

Here µ is a smoothing parameter and PMLE(w) is the maximum likelihood estimation from
the whole corpus.

Topic models provide another way to estimate the word distribution for each docu-
ment. In the case of four-level PAM with s super-topics and s′ sub-topics, we can estimate
PPAM (w|d) as the probability of predicting a new word w given the posterior distributions

12
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θ̂ and φ̂. Therefore, we have

PPAM (w = wk|d, θ̂, φ̂) =
s∑
i=1

s′∑
j=1

P (w = wk, zw = ti, z
′
w = t′j |d, θ̂, φ̂)

=
s∑
i=1

s′∑
j=1

P (zw = ti|θ̂(d))P (z′w = t′j |zw, θ̂(d))P (w = wk|z′w, φ̂)

=
s∑
i=1

s′∑
j=1

n
(d)
i + αri

n
(d)
r +

∑s
i=1 αri

n
(d)
ij + αij

n
(d)
i +

∑s′

j=1 αij

njk + βk
nj +

∑n
k=1 βk

.

Here n(d)
r is the number of occurrences of the root r in document d, which is equivalent

to the number of tokens in the document; n(d)
i is the number of occurrences of super-topic

ti in d; n(d)
ij is the number of times that sub-topic t′j is sampled from the super-topic ti in

d; nj is the total number of occurrences of sub-topic t′j in the whole corpus and njk is the
number of occurrences of word wk in sub-topic t′j . α and β are parameters in the Dirichlet
distributions. Note that when we have M Markov chains, we use their average to calculate

PPAM (w|d) =
1
M

∑
m

PPAM(m)(w|d).

As we can see, PAM estimates the probability for a document to generate a word via
underlying topics. Unlike MLE, a word that does not occur in a document may still have a
high probability if it occurs often in a topic discussed in the document. The corresponding
word distributions are generally more smooth than MLE. Therefore, they may not be precise
enough to distinguish between relevant and non-relevant documents. As previous work has
shown, LDA-based representation alone does not perform as well as the query likelihood
model while a combination of them can improve the retrieval performance (Wei and Croft
(2006)). In our experiments, we also use a linear combination with a parameter λ:

P (w|d) = λPQL(w|d) + (1− λ)PPAM (w|d)

4. Experimental Results

4.1 Four-Level PAM

In this section, we present example topics that PAM discovers from real-world text data and
evaluate against LDA using three measures: topic clarity by human judgement, likelihood
of held-out test data, and document classification accuracy. We also compare held-out data
likelihood with CTM and HDP.

In the experiments described below, we use a fixed four-level hierarchical structure
for PAM, which includes a root, a set of super-topics, a set of sub-topics and a word
vocabulary. For the root, we always assume a fixed symmetric Dirichlet distribution, where
each component in the parameter vector is 0.01. This parameter can be changed to adjust
the variance in the sampled multinomial distributions. We choose a small value so that
the variance is high and each document contains only a small number of super-topics,
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speech 0.0694 agents 0.0909 market 0.0281 students 0.0619
recognition 0.0562 agent 0.0810 price 0.0218 education 0.0445

text 0.0441 plan 0.0364 risk 0.0191 learning 0.0332
word 0.0315 actions 0.0336 find 0.0145 training 0.0309
words 0.0289 planning 0.0260 markets 0.0138 children 0.0281
system 0.0194 communication 0.0246 information 0.0126 teaching 0.0197

algorithm 0.0194 world 0.0198 prices 0.0123 school 0.0185
task 0.0183 decisions 0.0194 equilibrium 0.0116 student 0.0180

acoustic 0.0183 situation 0.0165 financial 0.0116 educational 0.0146
training 0.0173 decision 0.0151 evidence 0.0111 quality 0.0129

Table 2: Example sub-topics discovered by PAM with 50 super-topics and 100 sub-topics
from the Rexa dataset. On the left side of each column are the top 10 words in a
sub-topic and on the right side are their corresponding probabilities.

which tends to make the super-topics more interpretable. The multinomial distributions
for sub-topics are sampled once for the whole corpus from a given Dirichlet with parameter
0.01. Therefore the only parameters we need to learn are the Dirichlet parameters for the
super-topics.

We use the standard setting for LDA, where the prior for the topic mixture proportions is
a symmetric Dirichlet with parameter 1.0 and the prior for the topic distributions over words
is 0.01. There are three parameters in the HDP. Following the same procedure described in
(Teh et al. (2005)), we assume Gamma priors for the Dirichlet process parameters: α0 ∼
Gamma(1.0, 1.0) and γ ∼ Gamma(1.0, 0.1). Similar to PAM and LDA, the Dirichlet
distribution over topics has a parameter of 0.01.

In Gibbs sampling for PAM, LDA and HDP, we use 2,000 burn-in iterations, and then
draw 10 samples in the following 1,000 iterations. Each Gibbs sampler is initialized ran-
domly. For PAM and LDA, we uniformly sample the topic assignment for each token.
For HDP, we start with no topic at all and generate new topics when adding documents
successively. In each iteration, we update the Dirichlet parameters in PAM and HDP.

CTM is trained with variational expectation-maximization (EM). In the E-step, we
perform variational inference for each document. In the M-step, we optimize the parameters
in each topic and the logistic normal distribution by maximum likelihood estimation. This
algorithm is run until convergence. The implementation was provided by David Blei. The
training speed is approximately 4 times faster than PAM with 50 super-topics.

4.1.1 Topic Examples

Our first dataset comes from Rexa, a search engine over research papers (http://Rexa.info).
We randomly choose a subset of titles and abstracts from its large collection. In this dataset,
there are 4,000 documents, 278,438 word tokens and 25,597 unique words. We use 50 super-
topics and 100 sub-topics for PAM. The total training time is approximately 4 hours on
a 2.4 GHz Opteron machine with 2GB memory. In Table 2, we show some of the topic
examples. Each column corresponds to one sub-topic and lists the top 10 words and their
probabilities.
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Figure 4: Topic correlation in PAM. This is a small proportion of the topic structure in
the Rexa dataset. We use 50 super-topics and 100 sub-topics for PAM. Each
circle corresponds to a super-topic and each box corresponds to a sub-topic. One
super-topic can connect to several sub-topics and capture their correlation. The
numbers on the edges are the corresponding α values for the (super-topic, sub-
topic) pair.

Figure 4 shows a subset of super-topics in the data, and how they capture correlations
among sub-topics. For each super-topic ti, we rank the sub-topics {t′j} based on the learned
Dirichlet parameter αij . In this graph, each circle corresponds to one super-topic and
links to a set of sub-topics as shown by the boxes. The numbers on the edges are the
corresponding α values. As we can see, all the super-topics here share the same sub-topic
in the middle, which is a subset of stopwords in this corpus. Some super-topics also share
the same content sub-topics. For example, the topic about scheduling and tasks co-occur
with the topic about agents and also the topic about distributed systems. Another example
is information retrieval. It is discussed along with both the data mining topic and the web,
network topics.

4.1.2 Human Judgement

As a preliminary comparison of topic clarity between PAM and LDA, we conduct blind topic
evaluation. Each of five human evaluators is provided with a set of topic pairs generated
from the two models, anonymized and in random order. Evaluators are asked to choose
which one has stronger sense of semantic coherence and specificity.

For this experiment, we use the NIPS abstract dataset (NIPS00-12), which includes
1,647 documents, a vocabulary of 11,708 words and 114,142 word tokens. We have 100
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PAM LDA PAM LDA
control control motion image
systems systems image motion
robot based detection images

adaptive adaptive images multiple
environment direct scene local

goal con vision generated
state controller texture noisy

controller change segmentation optical
5 votes 0 vote 4 votes 1 vote
PAM LDA PAM LDA

signals signal algorithm algorithm
source signals learning algorithms

separation single algorithms gradient
eeg time gradient convergence

sources low convergence stochastic
blind source function line
single temporal stochastic descent
event processing weight converge

4 votes 1 vote 1 vote 4 votes

Table 3: Four topic pair examples provided to the human evaluators. Each pair consists of
one sub-topic in PAM and one topic in LDA. They are generated from the NIPS
dataset with 100 topics for LDA, and 50 super-topics and 100 sub-topics for PAM.

topics for LDA, and 50 super-topics and 100 sub-topics for PAM. The topics are generated
from the final sample in Gibbs sampling and the pairs are created based on similarity. For
each sub-topic in PAM, we find its most similar topic in LDA and consider them as a pair.
We also find the most similar sub-topic in PAM for each LDA topic. Similarity is measured
by the KL-divergence between topic distributions over words. After removing redundant
pairs and dissimilar pairs that share less than 5 out of their top 20 words, we provide the
evaluators with a total of 25 pairs. Several examples are shown in Table 3. There are 5
PAM topics that every evaluator agrees to be the better ones in their pairs, while LDA has
none. Out of 25 pairs, 19 topics from PAM are chosen by the majority (≥ 3 votes). We
present the full evaluation results in Table 4.

4.1.3 Likelihood Comparison

In addition to human evaluation of topics, we also provide quantitative measurements to
compare PAM with LDA, CTM and HDP. In this experiment, we use the same NIPS dataset
and split it into two subsets with 75% and 25% of the data respectively. Then we learn the
models from the larger set and calculate likelihood for the smaller set. The performance of
PAM is more sensitive to the number of sub-topics than the number of super-topics. We
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LDA PAM
5 votes 0 5
≥ 4 votes 3 8
≥ 3 votes 9 16

Table 4: Human judgement results for the NIPS dataset. For all the categories: 5 votes, ≥
4 votes and ≥ 3 votes, PAM topics are favored over LDA.

have experimented with 10, 20, 50 and 100 super-topics. While the best result is obtained
with 50 super-topics, it is not significantly better than using 20 super-topics. The other
two settings produce slightly worse results. Therefore we fix the number of super-topics to
be 50, and the number of sub-topics varies from 20 to 180.

In order to calculate the likelihood of held-out data, we must integrate out the sampled
multinomials and sum over all possible topic assignments. This problem has no closed-form
solution. Previous work that uses Gibbs sampling for inference approximates the likelihood
of a document d by the harmonic mean of a set of conditional probabilities P (d|z(d)), where
the samples are generated using Gibbs sampling (Griffiths and Steyvers (2004)). However,
this approach has been shown to be unstable because the inverse likelihood does not have
finite variance (Chib (1995)) and has been widely criticized (e.g. (Newton and Raftery
(1994)) discussion).

In our experiments, we employ a more robust alternative in the family of non-parametric
likelihood estimates—specifically an approach based on empirical likelihood (EL), e.g. (Dig-
gle and Gratton (1984)). In these methods one samples data from the model, and calculates
the empirical distribution from the samples. In cases where the samples are sparse, a kernel
may be employed. For each topic model, we use the following algorithm to estimate data
likelihood:

1. Randomly sample M documents from the trained model, based on its own generative
process.

2. For each sample ds, estimate its distribution over words P (w|ds) as the frequency of
word w in ds.

3. For each test document dt,

(a) P (dt|ds) =
∏
w P (w|ds);

(b) P (dt) =
∑

s P (dt|ds)P (ds) = 1
M

∑
s P (dt|ds).

One thing to note is that the estimation of P (w|ds) requires smoothing since a sample
document usually cannot cover every word in the vocabulary. However, in many cases,
we can avoid that by combining the first two steps together. In other words, we don’t
need to sample the actual words in the documents but directly calculate their probabilities.
For example, in the case of PAM, we only sample the multinomial distributions in each
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Figure 5: Likelihood comparison on the NIPS dataset with different numbers of topics. The
results for PAM, LDA and HDP are averages over 10 different samples and the
maximum standard error is 113.75. PAM uses a fixed number of 50 super-topics.
HDP is a straight line because it automatically determines the number of topics.

document. Then for each word w, we have

P (w|ds) =
∑
i

∑
j

P (ti|ds)P (t′j |ti, ds)P (w|t′j)

Here ti is a super-topic and t′j is a sub-topic. P (ti|ds) and P (t′j |ti, ds) are probabilities from
the sampled multinomials in ds. P (w|t′j) is the learned posterior distribution of t′j over
words. This technique has also been applied to other models.

The number of samples M is set to be 1,000 for each model. Unlike in Gibbs sampling,
the samples are unconditionally generated; therefore, they are not restricted to the topic
co-occurrences observed in the held-out data, as they are in the harmonic mean method.

We show the log-likelihoods on the test data for different numbers of topics in Figure
5. CTM is evaluated after variational EM converges, while the results of PAM, LDA and
HDP are averages over 10 different samples. Compared to LDA, PAM always produces
higher likelihoods for different numbers of sub-topics. The advantage is especially obvious
with more topics. LDA’s performance peaks at 40 topics and decreases as the number of
topics increases. On the other hand, PAM supports larger numbers of topics and has its
best performance at 160 sub-topics. When the number of topics is small, CTM exhibits
better performance than both LDA and PAM. However, as we use more and more topics,
its likelihood starts to decrease. The peak value for CTM is at 60 topics and it is lower
than the best performance of PAM. We also apply HDP to this dataset. Since there is no
pre-defined data structure, HDP does not model any topic correlations but automatically
learns the number of topics. Therefore, the result of HDP does not change with the number
of topics and it is similar to the best result of LDA. According to paired t-test results, the
improvements of PAM over other topic models are statistically significant.

18



Pachinko Allocation:Scalable Mixture Models of Topic Correlations

0 20 40 60 80 100
-248000

-246000

-244000

-242000

-240000

-238000

-236000

-234000

-232000

-230000

-228000

 PAM
 LDA
 CTM
 HDP

Lo
g-

Li
ke

lih
oo

d

Training Data (%)

Figure 6: Likelihood comparison on the NIPS dataset with different amounts of training
data. The results for PAM, LDA and HDP are averages over 10 different samples
and the maximum standard error is 171.72.

LDA HDP CTM PAM
bits-per-word 11.43 11.43 11.31 11.29

Table 5: Average numbers of bits to represent a word in the NIPS dataset. The results are
based on the the best settings in each model.

Based on the data likelihood, we can calculate the average number of bits needed to
represent a word as

−
∑

d log2 P (d)∑
d n

(d)
,

where d is a test document and n(d) is its length. The corresponding numbers for the best
results in each model are shown in Table 5.

We also present the log-likelihoods for different numbers of training documents in Figure
6. The results are all based on 160 topics except for HDP. As we can see, the performance
of CTM is noticeably worse than the other three models when there is limited amount of
training data. One possible reason is that CTM has a large number of parameters to learn
especially when the number of topics is large. Therefore it suffers from overfitting with
insufficient training documents.

In Figure 7, we show how the empirical likelihood changes over 5,000 Gibbs sampling
iterations. The model is PAM with 50 super-topics and 160 sub-topics. As we can see, it
increases rapidly before 1,000 iterations and gradually stabilizes after that.
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Figure 7: Log-likelihood for PAM over 5,000 iterations.

4.1.4 Document Classification

Another quantitative evaluation to compare PAM with LDA is document classification.
The discovered topics can be utilized for this task in various ways. For example, the
document-topic frequencies provide a low-dimensional set of features in addition to word
frequencies. In our experiment, we choose a simpler method to use the topics for document
classification, which demonstrates topic quality without much influence from other factors
such as the choice of classifiers or feature engineering.

The data used in this evaluation is the comp5 subset of the 20 newsgroups dataset,
which contains 4,836 documents with a vocabulary of 35,567 words. We conduct a 5-way
classification, where the documents in every class are randomly divided into 75% training
and 25% test datasets. For each class c, we use its own training set to learn a PAM model
Mc. Then for a test document d, the predicted class label L(d) is the one that assigns the
highest probability to it:

L(d) = arg max
c
P (d|Mc)

A similar approach is taken for LDA. The document likelihood is calculated in the same
way as described in Section 3.5.3. We have tried 50, 100 and 200 topics. The best settings for
PAM and LDA are 100 and 50 topics respectively. Again, PAM’s performance is relatively
insensitive to the number of super-topics and we still use 50 in this case. The classification
accuracies for both PAM and LDA are presented in Table 6. Each row corresponds to one
class and the last one is for all documents. As we can see, PAM outperforms LDA in every
class. According to the sign test, the overall improvement of PAM over LDA is statistically
significant with a p-value < 0.05.

4.2 Sparse Approximations

In this section, we present experimental results with the sparse approximations for both
LDA and PAM.
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class # docs LDA PAM
graphics 243 83.95 86.83

os 239 81.59 84.10
pc 245 83.67 88.16

mac 239 86.61 89.54
windows.x 243 88.07 92.20

total 1209 84.70 87.34

Table 6: Document classification accuracies (%) for the 20 newsgroups comp5 dataset. We
use 50 topics for LDA, and 50 super-topics and 100 sub-topics for PAM. Each row
corresponds to one class and the last one shows the overall performance.

Collection Num. of Docs Vocabulary Size Data Size Queries
AP 242,918 255,928 0.73Gb TREC 51-150
SJMN 90,257 150,890 0.29Gb TREC 51-150

Table 7: Statistics of the two IR collections.

4.2.1 Sparse LDA

Since LDA is a special case of PAM, the techniques we described in the previous section
can also be applied to it. We will first evaluate the sparse LDA on information retrieval,
focusing on the efficiency improvement compared to the ordinary LDA.

We use two TREC collections in our experiments: the Associated Press Newswire (AP)
1988-90 with queries 51-150 and San Jose Mercury News (SJMN) 1991 with queries 51-150.
Statistics of the datasets are summarized in Table 7. Relevance evaluation comes from
a judged pool of top documents retrieved by previous TREC participants. We only use
queries from the “title” field of TREC topics, excluding the ones that do not have any
relevant documents in the judged pool. This setting is exactly the same as used in (Wei
and Croft (2006)).

There are four parameters we need to determine: s′, M , µ and λ. There is a thorough
discussion about the effects of using different values for them in (Wei and Croft (2006)).
Since the focus here is about training efficiency, we simply use their best settings: s′ = 800,
M = 3, µ = 1000 and λ = 0.7. For the sparse LDA, we experiment with both random
(sLDA model 1) and sparse (sLDA model 2) initializations for Gibbs sampling. The sparse
initialization starts with 10000 documents. Then we double the number of documents every
5 iterations until the whole collection is processed.

We show the average retrieval precisions for LDA, sLDA models 1 and 2 in Tables 8 and
9. For each model, we draw a total of 5 samples with 20 iterations apart. For sLDA model
2 on AP collection, we ignored the first sample because it has not processed all training
documents yet. Avg1 corresponds to the average result from 3 individual Markov chains
and Avg2 is the result of combining them together. According to t-test results, there is no
significant difference between the best results of LDA and sLDA.
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Iterations LDA sLDA 1 sLDA 2
Avg1 Avg2 Avg1 Avg2 Avg1 Avg2

20 23.54 24.71 23.88 24.97
40 24.48 25.73 24.65 25.92 24.00 25.39
60 24.71 25.97 25.12 26.32 24.35 25.57
80 24.95 26.06 25.17 26.36 24.71 26.04
100 25.17 26.32 25.24 26.47 24.94 26.25

Table 8: Average retrieval precisions (%) of LDA, sLDA models 1 and 2 on the AP col-
lection. For Avg1, we use individual word distributions from 3 Markov chains
and then calculate their average performance. For Avg2, the Markov chains are
combined first to calculate the average word distributions, which are then used for
retrieval.

Iterations LDA sLDA 1 sLDA 2
Avg1 Avg2 Avg1 Avg2 Avg1 Avg2

20 20.71 21.58 20.68 21.70 20.38 21.34
40 21.19 22.33 21.35 22.20 21.04 21.96
60 21.55 22.60 22.02 22.87 21.53 22.36
80 21.82 22.83 22.11 22.94 21.76 22.65
100 21.84 22.83 22.14 22.96 21.91 22.78

Table 9: Average retrieval precisions (%) of LDA, sLDA models 1 and 2 on the SJMN
collection.

We also show the training time spent for each model in Table 10. Compared to LDA,
sLDA model 1 requires 22% less time for the AP dataset and 31% less time for the SJMN
dataset. We improve the efficiency even more with sLDA model 2, which reduces the
training time by 54% and 51% for the two collections. With the sparse initialization, we
can reduce the sample space more rapidly than the random initialization. For example, at
the 30th iteration for the AP dataset, sLDA model 1 still considers an average of 308 topics
for each token while sLDA model 2 only considers 133 topics.

4.2.2 Sparse PAM

With the sparse approximation, we are now able to apply PAM to very large datasets and
discover a lot of topics and their correlations. For this experiment, we use a subset of the
Rexa corpus, which contains 1,339,137 documents and 383,082 words in the vocabulary.
For a four-level DAG structure with 100 super-topics and 800 sub-topics, the sample space
for each token is 80,000 topic paths. It takes almost 1 day for an ordinary PAM to finish
one Gibbs sampling iteration. However, when we use sparse PAM, the average number of
topic paths for each token stabilizes around 120 after all documents are processed. Some
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LDA sLDA 1 sLDA2
AP 27h59m 21h46m 12h50m
SJMN 6h9m 4h14m 3h1m

Table 10: Total running time for 100 iterations of Gibbs sampling in LDA and sLDA models
1 and 2.

of the largest sub-topics are listed in Table 11. As we can see, they cover a wide range
of topics in computer science, biology, economy, social studies, etc. In addition to these
large topics, sparse PAM is also able to discover some very specific ones with only several
hundreds or thousands of words. This is one advantage of being able to include a large
number of topics. We show some examples in Table 12. The first topic talks about foraging
techniques inspired from ant colonies; the second one is about word sense disambiguation;
the third topic is a university in the city of Zurich, Switzerland and the fourth one is about
ancient culture.

We have also discovered some interesting patterns in topic correlations. Table 13 shows
super-topic examples with some of their top 5 sub-topics. The first example consists of topics
about speech recognition, neural networks and generic words. This a typical combination of
two independent but related topics. We observe a similar pattern in the second example.
On the other hand, the third super-topic is only about economy with different sub-topics
emphasizing different aspects.

We also apply sparse PAM to information retrieval, using 100 super-topics and 800 sub-
topics. Parameters M , µ and λ have the same values as used for LDA. The Gibbs samplers
are initialized sparsely. While the training time of sparse PAM has been dramatically
reduced compared to normal PAM, it is still slower than LDA. The retrieval precisions on
the AP collection are shown in Table 14. The first sample from sPAM at iteration 20 is
ignored because it does not include all documents. According to t-test results, there is no
significant difference between the two models.

5. Related Work

The problem of discovering a low-dimensional representation for large text collections has
been widely studied in the machine learning and information retrieval (IR) community. In
this section, we will review related work in this area, including probabilistic latent semantic
indexing, latent Dirichlet allocation and its variants, nonparametric approaches to structure
learning and topic models with dynamic properties.

5.1 Probabilistic Latent Semantic Indexing

Latent semantic indexing (LSI) (Deerwester et al. (1990)) is one approach to dimensionality
reduction for text collections. By applying singular value decomposition (SVD) to the
high-dimensional matrix representation of document-word frequencies, LSI produces a low-
dimensional latent-semantic space. Similarities between documents can then be evaluated
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abstract model time paper based
research software development design paper
image motion based object images
network networks communication routing mobile
protein dna structure proteins cell
information web user retrieval query
neural control networks network systems
speech recognition word language system
ray emission galaxies abstract observations
flow fluid model flows numerical
model ocean sea ice surface
robot control mobile robots system
performance cache data scheduling memory
knowledge based learning reasoning representation
web services service based server
user interaction interface computer human
computer science report university technical
wave scattering elastic waves boundary
models bayesian carlo monte markov
market price pricing prices model
growth business economic analysis paper
economic states united policy social
video coding compression image mpeg
logic programs program semantics programming
text semantic language word lexical
complexity bounds lower bound log
education students school study children
graph graphs problem number vertices
language xml semantics programming languages
agents agent social communication information
data query database queries databases
object oriented objects programming model
estimation model distribution regression models
health care clinical medical patient
planning plan plans problem decision
social study black health effects
matrix linear method methods matrices
neurons muscle cells activity rat
water ozone atmospheric measurements air

Table 11: Topics discovered by sparse PAM from the Rexa dataset. Each line lists the top
five words in one sub-topic. They are sorted according to the number of word
occurrences.
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ant ants colony pheromone foraging
sense word disambiguation wordnet senses
technische hochschule zrich zurich eidgenssische
tribes mizoram harappan jewish bc

Table 12: Some very specific topics discovered by sparse PAM from the Rexa dataset. Each
line lists the top five words in one sub-topic.

super-topic #1
neural control networks network systems
speech recognition word language system
algorithm problem algorithms time problems

super-topic #2
language xml semantics programming languages
network traffic control networks performance
0.02083 design software system architecture hardware
web services service based server

super-topic #3
economic states united policy social
growth business economic analysis paper

super-topic #4
protein dna structure proteins cell
brain human cortex activity cerebral
brain patients disease study heart

super-topic #5
model ocean climate water sea
phase dynamics liquid molecular particle
temperature high surface growth films
wave scattering elastic waves boundary

Table 13: Super-topic examples discovered by sparse PAM from the Rexa dataset.

in the new space, which captures word co-occurrence information and provides more robust
estimation than simple word matching.

As an alternative to LSI, Hofmann introduced probabilistic latent semantic indexing
(pLSI) (Hofmann (1999)), a generative model for latent semantic analysis. In pLSI, each
document has a multinomial distribution over a set of latent classes, where each of them has
a multinomial distribution over words. To generate a document, pLSI repeatedly samples a
class based on the per-document multinomial and then a word from this class. As a proba-
bilistic model, pLSI has the advantage of using statistical techniques for model estimation
and other related problems. However, the multinomial distributions associated with the
training documents are treated as parameters in the model instead of being generated from
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Iterations LDA sPAM
Avg1 Avg2 Avg1 Avg2

20 23.54 24.71
40 24.48 25.73 24.35 25.57
60 24.71 25.97 24.80 25.96
80 24.95 26.06 24.81 25.90
100 25.17 26.32 24.97 26.03

Table 14: Average retrieval precisions (%) of LDA and sPAM on the AP collection.
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Figure 8: The graphical model for LDA. α is the parameter of the Dirichlet distribution,
from which the per-document mixture proportions θ are sampled. β is the param-
eter for the Dirichlet prior on the topic distributions φ. For each word w, LDA
samples one topic z from θ, and then samples the word from the topic according
to its multinomial distribution φz.

a higher-level process. Therefore, it leaves some open questions such as how to generate a
new document that is not in the training set.

5.2 Latent Dirichlet allocation

Latent Dirichlet allocation (LDA) (Blei et al. (2003)) takes a further step to model document
generation. It is a widely-used topic model, often applied to textual data, and the basis
for many variants. LDA represents each document as a mixture of topics, where each topic
is a multinomial distribution over words in a vocabulary. The generative process in LDA
is similar to pLSI, except that the per-document multinomial distributions over topics are
sampled from a Dirichlet distribution. The corresponding graphical model is shown in
Figure 8. By introducing the additional Dirichlet distribution, LDA not only reduces the
number of parameters in the model, but also addresses the problem to generate documents
outside the training set.

26



Pachinko Allocation:Scalable Mixture Models of Topic Correlations

The topics discovered by LDA capture correlations among words, but LDA does not
explicitly model correlations among topics. This limitation arises because the topic pro-
portions in each document are sampled from a single Dirichlet distribution. As a result,
LDA has difficulty modeling data in which some topics co-occur more frequently than oth-
ers. However, topic correlations are common in real-world text data, and ignoring these
correlations limits LDA’s ability to predict new data with high likelihood. Ignoring topic
correlations also hampers LDA’s ability to discover a large number of fine-grained, tightly-
coherent topics. Because LDA can combine arbitrary sets of topics, it is reluctant to form
highly specific topics, for which some combinations would be “nonsensical”.

It is easy to see that LDA can be viewed as a special case of PAM: the DAG corre-
sponding to LDA is a three-level hierarchy consisting of one root at the top, a set of topics
in the middle and a word vocabulary at the bottom. The root is fully connected to all the
topics, and each topic is fully connected to all the words. The model structure is shown in
Figure 1(a). Each topic in LDA has a multinomial distribution over words, and the root
has a Dirichlet compound multinomial distribution over topics.

5.3 Correlated Topic Model

An alternative model that not only discovers topics from data, but also learns their cor-
relations, is the correlated topic model (CTM) (Blei and Lafferty (2006)). It is similar to
LDA, except that rather than drawing topic mixture proportions from a Dirichlet, it does so
from a logistic normal distribution, whose parameters include a covariance matrix in which
each entry specifies the correlation between a pair of topics. Therefore topics in CTM are
not independent from each other. The corresponding graphical model is shown in Figure
9. In a comparison against LDA using a collection of Science articles, CTM demonstrates
better performance on log-likelihood of held-out test data and also supports larger numbers
of topics.

Pairwise covariance matrix is one way to represent topic correlations. Another possibility
is to use mixture models. The model structure of CTM can be described by a special case of
PAM, as shown in Figure 1(b). The nodes that are directly connected to words correspond
to CTM topics, and for each pair of them, there is one additional node that captures
their correlation. One advantage of a mixture model is that it can have fewer parameters.
Consider a simple example shown in Figure 10. There are 7 topics {A, B, C, D, E, F, G},
where A through E are correlated and C through G are also correlated. We can describe this
kind of correlation with two different representations. The one on the left is the covariance
matrix, where the color of each entry specifies the degree of correlation between a pair
of topics. The one on the right is a mixture model with two clusters. The solid lines
correspond to strong correlations and dashed lines correspond to weak correlations. In this
example, we need 21 parameters in the covariance matrix while we only need 14 parameters
for the mixture model. The advantage is especially obvious when we use a large number of
topics because the number of parameters in the covariance matrix grows as the square of
the number of topics.
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Figure 9: The graphical model for CTM. Instead of a Dirichlet, CTM uses a logistic normal
distribution parameterized by mean µ and covariance matrix Σ to sample the
multinomial distribution over topics in every document.

CTM Mixture Model 
B C D E F G 

A
B
C

D
E
F A B C D E F G

21 parameters 14 parameters 
 

Figure 10: An example of topic correlations, which can be represented by both a symmetric
covariance matrix (on the left) and a mixture model (on the right). One of the
advantages of a mixture model is that it may include fewer parameters.

5.4 Hierarchical Dirichlet Processes

One important issue for mixture models is choosing an appropriate number of mixture
components. Model selection methods such as cross-validation and Bayesian model testing
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are usually inefficient. A nonparametric solution with the Dirichlet process (DP) (Ferguson
(1973)) is more desirable because it does not require specifying the number of mixture
components in advance. Dirichlet process mixture models have been widely studied in many
problems (Kim et al. (2006); Daume-III and Marcu (2005); Xing et al. (2004); Sudderth
et al. (2005)).

In order to solve problems where a set of mixture models share the same mixture com-
ponents, Teh et al. propose the hierarchical Dirichlet process (HDP) (Teh et al. (2005)). It
is intended to model data that is pre-organized into nested groups. Each group is associ-
ated with a Dirichlet process, whose base measure is sampled from a higher-level Dirichlet
process. Unlike PAM, HDP does not automatically discover topic correlations from un-
structured data. One example of using this model is to learn the number of topics in LDA,
in which each document is associated with a Dirichlet process.

5.5 Hierarchical LDA

Another closely related model that also represents and learns topic correlations is hierarchi-
cal LDA (hLDA) (Blei et al. (2004)). It is a variation of LDA that assumes a hierarchical
structure among topics. Each topic has a distribution over words and can be reached by
a unique path from the root. Topics at higher levels are more general, such as stopwords,
while the more specific words are organized into topics at lower levels. To generate a doc-
ument, hLDA first samples a leaf in the hierarchy. Then for each word in the document,
it samples a node on the path from the leaf to the root, and this node generates the word.
Thus hLDA can well explain a document that discusses a mixture of computer science,
artificial intelligence and robotics. However, for example, the document cannot cover both
robotics and natural language processing under the more general topic artificial intelligence.
This is because a document is sampled from only one topic path in the hierarchy.

Compared to hLDA, PAM provides more flexibility for document generation because it
samples a topic path for each word instead of each document. Note that it is possible to
create a DAG structure in PAM that would capture hierarchically nested word distributions
and obtain the advantages of both models.

6. Conclusion and Future Work

In this paper, we have presented pachinko allocation, a mixture model that uses a DAG
structure to capture arbitrary topic correlations. Each leaf in the DAG is associated with
a word in the vocabulary and each interior node corresponds to a topic that models the
correlation among its children, where topics can be not only parents of words, but also
other topics. The DAG structure is completely general, and some topic models like LDA
can be represented as special cases of PAM. Compared to other approaches that capture
topic correlations such as hierarchical LDA and correlated topic model, PAM provides
more expressive power to support complicated topic structures and adopts more realistic
assumptions for document generation.

One of our quantitative evaluation metrics is the likelihood of held-out test data. There
is no closed-form solution to this problem for topic models like LDA and PAM. Therefore
we propose an estimation technique based on empirical likelihood. After the model is
trained, we unconditionally generate document samples. Unlike previous work that has
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used a harmonic mean method, these samples are not restricted to the topic co-occurrences
observed in the held-out data. With this technique, PAM is compared against other related
topic models and demonstrates significant improvement.

Complexity has been an obstacle for us to apply PAM to very large datasets. While
we assume a fully-connected structure for the four-level PAM, many connections are indeed
very sparse. By capturing such sparsity, we are able to dramatically reduce the sample space
for Gibbs sampling. We describe several techniques to develop a scalable approximation.
It allows us to apply LDA to information retrieval with improved efficiency and use PAM
to discover topic correlations in large collections.

The four-level DAG structure is only a simple example of pachinko allocation. This
model offers far more flexibility to describe topic correlations. One direction of our future
work is to explore more complicated DAG structures. The first step would be introducing
edges that skip layers in arbitrary ways. For large text collections, we are also interested in
using more layers of topics.

Since topic models usually adopt a bag-of-words representation for the documents, they
capture long-term dependencies within one document but ignore local dependencies between
nearby words. Previous work has studied various ways to combine these two types of
dependencies. For example, the HMM-LDA model (Griffiths et al. (2005)) integrates hidden
Markov model (HMM) with LDA by designating one special state to generate topic words
only. The non-topic states operate the same way as ordinary HMM states, thus capturing
linear chain dependencies in word sequences. Another approach with a similar goal uses
a hierarchical Bayesian framework to combine bigram language models and topic models
(Wallach (2006)). In the future, we plan to study possible ways to incorporate n-gram
statistics into PAM.

Topic models can be helpful for a wide range of applications including social network
analysis, data mining and semi-supervised learning. We believe that with the great expres-
sive power, PAM is a promising new technique for such tasks.
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