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ABSTRACT
Techniques for automatically performing ontology mapping
are vital for many real-world applications. Unfortunately,
the problem is difficult because many types of evidence must
be integrated to make good alignment decisions, and these
decisions are co-dependent. In this paper, we propose a con-
ditional random field (CRF) for ontology mapping which
combines probabilistic machine learning and dependencies
among the prediction. We integrate multiple sources of evi-
dence using clauses in first-order logic, and learn correspond-
ing weights directly from labeled training data. Our exper-
iments show examples of impressive gains when tested on a
commonly used mapping corpus; our method achieves an av-
erage of 11% (absolute) improvement in F1 when compared
to other systems. We also show that our CRF is capable of
generalizing from one mapping domain to another—making
our supervised approach applicable for domains that lack
labeled training data.
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1. INTRODUCTION
Ontology mapping is the problem of finding equivalent

concepts across several different ontological resources. This
task is often viewed as an n-ary classification problem where
each concept in the target ontology is classified as a con-
cept in the source ontology. In practice, these classifiers
are learned entirely in the source domain, treating each of
its concepts as a class label and learning a corresponding
distribution over words. Typically, several classifiers are
learned in this manner, and combined using a multi-strategy
approach [5, 14]. Although this technique does have some
strengths, we also identify several weaknesses.

The first deficiency is that parameters are learned with-
out a ground truth mapping between the ontologies. This
is why weights in multi-strategy methods are often set by
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hand. Without automatic learning, restrictions are placed
on the number of features that can cross ontology bound-
aries because manually setting a large number of weights
places a significant burden on users.

A second is the limited expressivity of the classifiers. When
classifying concepts in the target domain as ones in the
source, we are implicitly modeling similarities between pairs
of concepts (e.g., computing the probability of concept i
given concept j requires only two concepts as arguments).
This places a restriction on the types of features that can
be implemented. For example, it may be useful to repre-
sent the fact that a node in a taxonomy tree is not likely to
be mapped to both a child and its respective parent; how-
ever, this cannot be captured by a model that factorizes into
pairs. In current practice, these types of constraints are usu-
ally enforced with heuristics or in the post-processing stage,
rather than in a probabilistic fashion.

A third is that the n-ary classification paradigm is not
well suited to complicated mappings, where (1) concepts
in one domain lack an equivalent concept in the other and
(2) concepts have more than one equivalent (i.e., an n:k
mapping).

To address all three of these issues, we propose model-
ing ontology mapping with a conditional random field. Our
model factorizes into sets of concepts and their pairs. In-
tuitively, a factor measures the affinity between sets of con-
cepts; that is, how likely the concepts in those subsets map
to each other. By factorizing the problem into sets we enable
the model to reason with the full expressive power of first-
order logic. For example, clauses in logic can tie information
from multiple nodes in a tree: incorporating concept names,
instance data, and structure (e.g., neighbors in a taxonomy
tree), all within a single clause. Also, because this model is
completely supervised, weights corresponding to each clause
are learned discriminatively from data.

Once parameters are learned, the CRF is capable of pro-
ducing the probability of a particular ontology mapping
given the observed (and novel) input ontologies. The prob-
lem of MAP inference is to discover the mapping that max-
imizes this conditional probability. However, because there
are an exponential number of subsets (and consequently, fac-
tors), exact inference is intractable. Therefore, we present a
polynomial time approximation in Section 3.2.

A major contribution of our approach is that we learn
a model that maximizes parameter likelihood under a true
mapping, rather than learning a model that maximizes the
generative probability of concepts in an ontology. The em-
pirical results of our method are not directly comparable



to current systems (which are restricted to 1-1 mappings)
because it is more expressive and the size of the prediction
space explodes. However, we are able to achieve an aver-
age improvement of 11% absolute F1. We also show that
our features are capable of generalizing across two domains,
making our method applicable to domains with no labeled
data.

2. RELATED WORK
Schema matching is a well studied task that has provided

the foundation for research in ontology mapping [2, 11, 9, 4,
7]. This can be viewed as a special case of ontology mapping
where database fields are considered the analog of concepts
and schemas are treated as flat ontologies.

He and Chang [7] propose a generative statistical model
for performing schema matching. In contrast, our model is
discriminatively trained in a fully supervised setting. Fur-
thermore, changes in the structure of our model are not
needed to accommodate additional dependencies, making it
easier for users who are not experts in statistics to adapt it
to new domains.

GLUE [5] is a system that produces mappings across two
taxonomy trees. The system contains features for modeling
both concepts and structures, but combines them with post-
processing rather than modeling the uncertainty jointly. Ad-
ditionally, GLUE is a less supervised approach in the sense
that only part of the model is learned from labeled data. The
meta classifier is hand-tuned and relaxation labeling, the ap-
proach that combines additional structural constraints from
neighbors, is an unsupervised method. In contrast our model
is entirely supervised and is capable of learning all param-
eters from labeled mappings (including those tied to struc-
tural constraints).

RiMOM [14] is another system that discovers mappings
across ontologies. Mapping is performed by finding a con-
figuration that minimizes Bayesian risk. However, weights
for various pieces of evidence are hand tuned in advance
rather than learned from the data. An extension, iRiMOM
[15] learns to select a strategy from multiple sub-strategies,
but treats the possibly overlapping sub-strategies as inde-
pendent of each-other. In contrast, our discriminatively
trained method makes it easy to model dependencies be-
tween overlapping pieces of evidence without any indepen-
dence assumptions.

APFEL [6] is a system that learns parameters through
user interaction with the alignment process. Although su-
pervised machine learning is explored, the problem of ontol-
ogy mapping itself is not formalized as a statistical model.

Conditional random fields [8] have been successfully ap-
plied to many structured prediction problems in natural lan-
guage processing [8], image analysis [10], and other areas.
We use first-order features to tie parameters in our CRF
combining logic and probability. Others have explored forms
of weighted logic including research on Markov logic [12] and
Bayesian logic (BLOG) [1]. Our method is in the same fam-
ily as the former, since both are undirected, discriminatively
trained models with weights on logical clauses.

3. SOLUTION OVERVIEW

3.1 Ontology Mapping with a CRF
In this section we briefly discuss how to model ontology

mapping with a conditional random field. We begin by fac-
torizing the mapping into sets of concepts where each con-
cept in the set is predicted to be semantically equivalent
(mapped). Let xi be a set of edges each of which maps a
concept in one ontology to a concept in another. Let the
binary random variable yi be true if and only if all edges
in xi correctly map the concepts they span. Let Λ = {λi}
be a set of real-valued parameters and F = {f(xk, yk, yk′)i}
be a set of real valued feature functions (or clauses in first
order logic). Then we model the probability that mappings
of concepts in xi are correct as

P (yi|xi) ∝ exp
X

k

λkfk(xk, yk, yk′) (1)

where yk′ are labels in the neighborhood of concepts in xk.
Notice how feature functions (F) take the target and neigh-
bor labels as well as the observed ontologies as arguments.
This allows the model to probabilistically reason over nearly
any function from a simple string match to a complicated
sub-strategy in a multi-strategy approach.

Intuitively, we can think of the above model as an affin-
ity metric describing how compatible a set of concepts are.
Highly compatible concepts obtain higher scores than those
that are not likely to be mapped. However, we would like
our model to handle more than a single set of concepts, so we
extend the model to represent an entire mapping as follows:

P (y|x) =
1

Zx

Y
yi∈y

ψ(yi, yi′x) (2)

where Zx is an input dependent normalizing constant, and
ψ are factors that represents affinity of concepts in a set
(given by Equation 1).

3.2 Learning and Inference
Unfortunately exact inference and learning is intractable

in this model. Therefore, to learn the parameters Λ, we use
a piecewise approximation [13]. This is done by sampling
positive and negative examples of sets xi and corresponding
labels yi. Weights are assigned by performing gradient de-
scent on these data-label pairs with the usual gaussian prior.
This can be viewed as a regularized maximum entropy (or
logistic regression) model for binary classification.

Inference is currently a greedy agglomerative approxima-
tion to the maximum a posteriori (MAP) setting. The pro-
cess initializes the configuration to an empty mapping and
then iteratively adds the highest scoring edges until all scores
are below a stopping threshold τ . This method does not re-
quire computing the intractable partition function 1

Zx
, be-

cause it is constant given the observed input.
These training and testing procedures have been shown

to work well in practice, especially when exact methods are
not feasible [16, 3].

4. EXPERIMENTS

4.1 Dataset
We use the Illinois Semantic Integration Archive datasets

to evaluate our methods. It consists of taxonomy trees from
two domains: course catalog and company profiles.

The course catalog contains a hierarchical representation
of classes from Cornell and University of Washington (see



Features for concept compatability
Description real/bool

TFIDF Cos distance between concepts real
TFIDF Cosine distance between instances real

Substring match boolean

Features for structural dependencies
Description real/bool

Concepts are within n tree-levels boolean
Parents are mapped boolean

Number of children mapped real
Number of siblings mapped real

Table 1: pairwise feature extractors

Figure 1). There are a total of 104 concepts in this domain.
Cornell contributes 54 concepts and 4360 instances while
Washington contributes 50 concepts and 6957 instances.

The company profile domain contains a hierarchical repre-
sentation of companies, industries, and sectors (see Figure 1
for an example). The company profile domain is larger than
the catalog set having 219 concepts total. Yahoo contributes
102 concepts and and the Standard contributes 117.

4.2 Features
We use first-order logic clauses to express our features.

These clauses allow us to aggregate pairwise comparisons
into representations of entire sets (mappings). Most of our
extractors take two concepts as arguments and produce a
binary or real-valued result. Binary results are aggregated
universally and existentially whereas real-valued features are
aggregated with functions such as max, min, and average.

Our features can be organized into features over concepts,
instances, and taxonomy tree structure. Features involving
concepts are binary valued substring matches or real-valued
TFIDF cosine distances. Similarly, cosine distances are used
between instances. We also incorporate a variety of features
that examine the labels (mappings) of parents, children, and
siblings. See Table 1 for a complete list.

4.3 Implementation Details
In the following experiments we employ the learning and

inference methods described in Section 3.2. For learning we
sample n ∗ 30 training examples (where n is the number of
instances in the training set) in such that 25% are positive
examples of matchings and the remaining 75% are negative.
We justify this based on the observation that by randomly
sampling concepts, the number of negative examples would
far exceed positive ones; yet, we still wish the model to be
somewhat biased towards negative examples. Features (see
Section 4.2) are extracted from the training instances and
weights are set as described in Section 3.2.

For inference we use the greedy agglomerative approxi-
mation with stopping threshold τ = 0.5. This is a natural
threshold choice since it represents the decision boundary of
the binary random variable yi from Section 3.2.

4.4 Results
We evaluate our system with two types of experiments:

the first tests performance on a single domain, while the
second tests generalization across the domains. Both exper-
iments are important since the former allows comparison to
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and Literature

Biology

Courses

College of Arts and Sciences

Russian Mathematics

Company Index

Basic Materials

Paper Products Gold, Silver

Company Index

Manufacturing

Paper and Paper

products

Metal Fabrication

courses
courses courses courses

companies companies
companies

companies

Figure 1: Examples of both ontology alignment do-
mains. The top half gives an example of an align-
ment for a portion of the taxonomy trees of Uni-
versity of Washington (left) and Cornell University
(right). Instances in this domain are courses such as
“Russian Literature 100”. The bottom half of the
figure is an example of an alignment from the Ya-
hoo (left) and The Standard (right). In this domain
instances are names of companies that deal with the
corresponding concepts, for example ”HammerMill”
makes paper.

previous work while the latter shows applicability in real-
world problems where labeled training data may be unavail-
able.

For single-domain experiments, we perform two-fold cross
validation and report the average. Essentially, this entails
dividing the data into two disjoint sets: training on one and
testing on the other (and vice versa). In this fashion we are
able to evaluate the entire mapping for each domain.

For our second experiment, we train the CRF on one do-
main and then test on the other. We evaluate the result of
training on course catalog and testing on company profile as
well as the opposite: training on company profile and testing
on course catalog.

All experiments are evaluated in terms of precision, re-
call and F1. In our problem setup, we do not assume a
bijection mapping, and so we present only one set of num-
bers per domain. In contrast, previous systems evaluated
on these datasets have had the crutch of a 1-1 mapping and
presented two sets of accuracies per domain (one for the
A → B direction and another for the B → A direction) [5,
14].

Analysis and Comparison of Results
When training and testing on the same domain we obtain
results that are competitive with current systems. For ex-
ample, GLUE [5] with the relaxation labeler configuration
achieves roughly 66 to 80% accuracy for the course catalog
II dataset. The best configuration of GLUE achieve be-
tween 68 and 80% accuracy on the company profile dataset.
Our numbers are not directly comparable since our evalua-
tion metrics differ (we present a global mapping score rather
than two separate bijection evaluations); however, they do



F1 Precision Recall
courses 89.1 93.8 84.9

company 82.1 88.9 76.3
A(course to company) 65.2 79.7 55.2
B(company to course) 76.4 94.4 64.1

Table 2: Shows the precision, recall and F1 of the
taxonomy tree alignment task with A) the model
trained on the course catalog mapping and tested
on the company profile mapping and B) the model
trained on company profile and tested on course cat-
alog. Results for 2-fold cross validation on both com-
pany profile and course catalog are shown as well.

provide a loose basis for comparison.
Our method is able to outperform GLUE achieving a 50%

reduction in error on the course catalog domain (or 10% ab-
solute improvement); we also obtain a 2% absolute increase
in F1 on the company profile set. On average for both do-
mains, our method achieves 85% matching accuracy in com-
parison with 74% for GLUE.

For the generalization experiments we were pleased to see
a relatively small decrease in F1. The precision is particu-
larly high (80 to 94%) implying predicted links are fairly reli-
able. In fact, the generalization capabilities exceeded our ex-
pectations. Our model properly learns to place emphasis on
both the concept-name-features and instance-features even
though these weights are learned from an entirely separate
domain. For example, we correctly map “Recreational Ac-
tivities” (Yahoo) and “Miscellaneous Entertainment” (The
Standard) even though no words in the concept names over-
lap.

5. CONCLUSION AND FUTURE WORK
We have presented a fully supervised statistical model for

ontology mapping based on conditional random fields. Our
model accounts for uncertainty in both the data and the
data’s structure. We evaluated our results on two domains
and showed that our supervised model is able to general-
ize across them. This is promising since mappings can be
automatically predicted even for domains with no labeled
data. However, experiments on more domains should be
conducted to verify results further. Future work can also
help identify classes of features with greater generalization
capabilities.

From a machine learning perspective, exact learning and
inference in the model is intractable and improvements may
also be achieved by investigating other approximation solu-
tions to these tasks. For example, rank-based training or
stochastic inference methods. Finally, conditional random
fields provide a convenient framework for modeling many
tasks together. Ontology alignment can be modeled jointly
with related tasks (such as ontology integration) to improve
the performance of both tasks.
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