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Abstract

Coreference analysis, also known as record linkage or identity uncer-
tainty, is a difficult and important problem in natural language process-
ing, databases, citation matching and many other tasks. This paper intro-
duces several discriminative, conditional-probability models for coref-
erence analysis, all examples of undirected graphical models. Unlike
many historical approaches to coreference, the models presented here
are relational—they do not assume that pairwise coreference decisions
should be made independently from each other. Unlike other relational
models of coreference that are generative, the conditional model here can
incorporate a great variety of features of the input without having to be
concerned about their dependencies—paralleling the advantages of con-
ditional random fields over hidden Markov models. We present positive
results on noun phrase coreference in two standard text data sets.

1 Introduction

In many domains—including computer vision, databases and natural language
processing—we find multiple views, descriptions, or names for the same underlying ob-
ject. Correctly resolving these references is a necessary precursor to further processing and
understanding of the data. In computer vision, solving object correspondence is necessary
for counting or tracking. In databases, performing record linkage or de-duplication creates
a clean set of data that can be accurately mined. In natural language processing, corefer-
ence analysis finds the nouns, pronouns and phrases that refer to the same entity, enabling
the extraction of relations among entities as well as more complex propositions.

Consider, for example, the text in a news article that discusses the entitiesGeorge Bush,
Colin Powell, and Donald Rumsfeld. The article contains multiplementions of Colin
Powell by different strings—“Secretary of State Colin Powell,” “he,” “Mr. Powell,” “the
Secretary”—and also refers to the other two entities with sometimes overlapping strings.
The coreference task is to use the content and context of all the mentions to determine how
many entities are in the article, and which mention corresponds to which entity.

This task is most frequently solved by examining individual pair-wise distance measures
between mentions independently of each other. For example, database record-linkage and
citation reference matching has been performed by learning a pairwise distance metric
between records, and setting a distance threshold below which records are merged (Monge



& Elkan, 1997; McCallum et al., 2000; Bilenko & Mooney, 2002; Cohen & Richman,
2002). Coreference in NLP has also been performed with distance thresholds or pairwise
classifiers (McCarthy & Lehnert, 1995; Ge et al., 1998; Soon et al., 2001; Ng & Cardie,
2002).

But these distance measures are inherently noisy and the answer to one pair-wise corefer-
ence decision may not be independent of another. For example, if we measure the distance
between all of the three possible pairs among three mentions, two of the distances may
be below threshold, but one above—an inconsistency due to noise and imperfect measure-
ment. For example, “Mr. Powell” may be correctly coresolved with “Powell,” but par-
ticular grammatical circumstances may make the model incorrectly believe that “Powell”
is coreferent with a nearby occurrence of “she.” Inconsistencies might be better resolved
if the coreference decisions are made independent relation to each other, and in a way
that accounts for the values of the multiple distances, instead of a threshold on single pairs
independently.

Recently Pasula et al. (2003) have proposed a formal, relational approach to the problem
of identity uncertainty using a type of Bayesian network called a Relational Probabilistic
Model (Friedman et al., 1999). A great strength of this model is that it explicitly captures
the dependence among multiple coreference decisions.

However, it is a generative model of the entities, mentions and all their features, and thus
has difficulty using many features that are highly overlapping, non-independent, at varying
levels of granularity, and with long-range dependencies. For example, we might wish to
use features that capture the phrases, words and character n-grams in the mentions, the
appearance of keywords anywhere in the document, the parse-tree of the current, preceding
and following sentences, as well as 2-d layout information. To produce accurate generative
probability distributions, the dependencies between these features should be captured in the
model; but doing so can lead to extremely complex models in which parameter estimation
is nearly impossible.

Similar issues arise in sequence modeling problems. In this area significant recent suc-
cess has been achieved by replacing a generative model—hidden Markov models—with a
conditional model—conditional random fields (CRFs) (Lafferty et al., 2001). CRFs have
reduced part-of-speech tagging errors by 50% on out-of-vocabulary words in comparison
with HMMs (Ibid.), matched champion noun phrase segmentation results (Sha & Pereira,
2003), and significantly improved extraction of named entities (McCallum & Li, 2003),
citation data (Peng & McCallum, 2004), and the segmentation of tables in government re-
ports (Pinto et al., 2003). Relational Markov networks (Taskar et al., 2002) are similar
models, and have been shown to significantly improve classification of Web pages.

This paper introduces three conditional undirected graphical models for identity uncer-
tainty. The models condition on the mentions, and generate the coreference decisions, (and
in some cases also generate attributes of the entities). In the first most general model, the
dependency structure is unrestricted, and the number of underlying entities explicitly ap-
pears in the model structure. The second and third models have no structural dependence
on the number of entities, and fall into a class of Markov random fields in which inference
corresponds to graph partitioning (Boykov et al., 1999).

After introducing the first two models as background generalizations, we show experi-
mental results using the third, most specific model on a noun coreference problem in two
different standard newswire text domains: broadcast news stories from the DARPA Auto-
matic Content Extraction (ACE) program, and newswire articles from the MUC-6 corpus.
In both domains we take advantage of the ability to use arbitrary, overlapping features of
the input, including multiple grammatical features, string equality, substring, and acronym
matches. Using the same features, in comparison with an alternative natural language pro-
cessing technique, we reduce error by 33% and 28% in the two domains on proper nouns
and by 10% on all nouns in the MUC-6 data.



2 Three Conditional Models of Identity Uncertainty

We now describe three possible configurations for conditional models of identity uncer-
tainty, each progressively simpler and more specific than its predecessor. All three are
based on conditionally-trained, undirected graphical models.

Undirected graphical models, also known as Markov networks or Markov random fields,
are a type of probabilistic model that excels at capturing interdependent data in which
causality among attributes is not apparent. We begin by introducing notation for mentions,
entities and attributes of entities, then in the following subsections describe the likelihood,
inference and estimation procedures for the specific undirected graphical models.

Let E = (E1, ...Em) be a collection of classes or “entities”. LetX = (X1, ...Xn) be a
collection of random variables over observations or “mentions”; and letY = (Y1, ...Yn) be
a collection of random variables over integer identifiers, unique to each entity, specifying to
which entity a mention refers. Thus they’s are integers ranging from 1 tom, and ifYi = Yj ,
then mentionXi is said to refer to the same underlying entity asXj . For example, some
particular entitye4, U.S. Secretary of State, Colin L. Powell, may be mentioned multiple
times in a news article that also contains mentions of other entities:x6 may be “Colin
Powell”; x9 may be “he”;x17 may be “the Secretary of State.” In this case, the unique
integer identifier for this entity,e4, is 4, andy6 = y9 = y17 = 4.

Furthermore, entities may have attributes. LetA be a random variable over the collection of
all attributes for all entities. Borrowing the notation of Relational Markov Networks (Taskar
et al., 2002), we write the random variable over the attributes of entityEs asEs.A =
{Es.A1, Es.A2, Es.A3, ...}. For example, these three attributes may begender, birth year,
andsurname. Continuing the above example, thene4.a1 = MALE, e4.a2 = 1937, ande4.a3

= Powell. One can interpret the attributes as the values that should appear in the fields of
a database record for the given entity. Attributes such assurnamemay take on one of the
finite number of values that appear in the mentions of the data set.

We may examine many features of the mentions,x, but since a conditional model doesn’t
generate them, we don’t need random variable notation for them. Separate measured fea-
tures of the mentions and entity-assignments,y, are captured in different feature functions,
f(·), over cliques in the graphical model. Although the functions may be real-valued, typ-
ically they are binary. The parameters of the model are associated with these different
feature functions. Details and example feature functions and parameterizations are given
for the three specific models below.

The task is then to find the most likely collection of entity-assignments,y, (and optionally
also the most likely entity attributes,a), given a collection of mentions and their con-
text, x. A generative probabilistic model of identity uncertainty is trained to maximize
P (Y,A,X). A conditional probabilistic model of identity uncertainty is instead trained to
maximizeP (Y,A|X), or simplyP (Y|X).

2.1 Model 1: Groups of nodes for entities

First we consider an extremely general undirected graphical model in which there is a node
for the mentions,x,1 a node for the entity-assignment of each mention,y, and a node for
each of the attributes of each entity,e.a. These nodes are connected by edges in some
unspecified structure, where an edge indicates that the values of the two connected random
variables are dependent on each the other.

1Even though there are many mentions inx, because we are not generating them, we can represent
them as a single node. This helps show that feature functions can ask arbitrary questions about various
large and small subsets of the mentions and their context. We will still usexi to refer to the content
and context of theith mention.



The parameters of the model are defined over cliques in this graph. Typically the parame-
ters on many different cliques would be tied in patterns that reflect the nature of the repeated
relational structure in the data. Patterns of tied parameters are common in many graphi-
cal models, including HMMs and other finite state machines (Lafferty et al., 2001), where
they are tied across different positions in the input sequence, and by more complex pat-
terns based on SQL-like queries, as in Markov Relational Networks (Taskar et al., 2002).
Following the nomenclature of the later, these parameter-tying-patterns are calledclique
templates; each particular instance a template in the graph we call ahit.

For example, one clique template may specify a pattern consisting of two mentions, their
entity-assignment nodes, and an entity’ssurnameattribute node. The hits would consist
of all possible combinations of such nodes. Multiple feature functions could then be run
over each hit. One feature function might have value 1 if, for example, both mentions were
assigned to the same entity as the surname node, and if the surname value appears as a
substring in both mention strings (and value 0 otherwise).

The Hammersley-Clifford theorem stipulates that the probability of a particular set of val-
ues on the random variables in an undirected graphical model is a product of potential
functions over cliques of the graph. Our cliques will be the hits,h = {h, ...}, resulting
from a set of clique templates,t = {t, ...}. In typical fashion, we will write the probability
distribution in exponential form, with each potential function calculated as a dot-product
of feature functions,f , and learned parameters,λ,

P (y,a|x) =
1

Zx
exp

(∑
t∈t

∑
ht∈ht

∑
l

λlfl(y,a,x : ht)

)
,

where(y,a,x : ht) indicates the subset of the entity-assignment, attribute, and mention
nodes selected by the clique template hitht; andZx is a normalizer to make the probabili-
ties over ally sum to one (also known as the partition function).

The parameters,λ, can be learned by maximum likelihood from labeled training data.
Calculating the partition function is problematic because there are a very large number of
possibley’s anda’s. Loopy belief propagation or Gibbs sampling sampling have been used
successfully in other similar situations,e.g.(Taskar et al., 2002).

However, note that both loopy belief propagation and Gibbs sampling only work over a
graph with fixed structure. But in our problem the number of entities (and thus number of
attribute nodes, and the domain of the entity-assignment nodes) is unknown. Inference in
these models must determine for us the highest-probability number of entities.

In related work on a generative probabilistic model of identity uncertainty, Pasula et al.
(2003), solve this problem by alternating rounds of Metropolis-Hastings sampling on a
given model structure with rounds of Metropolis-Hastings to explore the space of new
graph structures.

2.2 Model 2: Nodes for mention pairs, with attributes on mentions

To avoid the need to change the graphical model structure during inference, we now remove
any parts of the graph that depend on the number of entities,m: (1) The per-mention
entity-assignment nodes,Yi, are random variables whose domain is over the integers 0
throughm; we remove these nodes, replacing them with binary-valued random variables,
Yij , over each pair of mentions,(Xi, Xj) (indicating whether or not the two mentions are
coreferent); although it is not strictly necessary, we also restrict the clique templates to
operate over no more than two mentions (for efficiency). (2) The per-entity attribute nodes
A are removed and replaced with attribute nodes associated with each mention; we write
xi.a for the set of attributes on mentionxi.

Even though the clique templates are now restricted to pairs of mentions, this does not
imply that pairwise coreference decisions are made independently of each other—they are



still highly dependent. Many pairs will overlap with each other, and constraints will flow
through these overlaps. This point is reiterated with an example in the next subsection.

Notice, however, that it is possible for the model as thus far described to assign non-zero
probability to an inconsistent set of entity-assignments,y. For example, we may have an
“inconsistent triangle” of coreference decisions in whichyij andyjk are 1, whileyik is 0.
We can enforce the impossibility of all inconsistent configurations by adding inconsistency-
checking functionsf∗(yij , yjk, yik) for all mention triples, with the correspondingλ∗’s
fixed at negative infinity—thus assigning zero probability to them. (Note that this is simply
a notational trick; in practice the inference implementation simply avoids any configura-
tions ofy that are inconsistent—a check that is simple to perform.) Thus we have

P (y,a|x) =
1

Zx
exp

∑
i,j,l

λlfl(xi, xj , yij , xi.a, xj .a) +
∑
i,j,k

λ∗f∗(yij , yjk, yik)

 .

We can also enforce consistency among the attributes of coreferent mentions by similar
means. There are many widely-used techniques for efficiently and drastically reducing
the number of pair-wise comparisons,e.g.(Monge & Elkan, 1997; McCallum et al., 2000).
In this case, we could also restrictfl(xi, xj , yij) ≡ 0,∀yij = 0.

2.3 Model 3: Nodes for mention pairs, graph partitioning with learned distance

When gathering attributes of entities is not necessary, we can avoid the extra complication
of attributes by removing them from the model. What results is a straightforward, yet
highly expressive, discriminatively-trained, undirected graphical model that can use rich
feature sets and relational inference to solve identity uncertainty tasks. Determining the
most likely number of entities falls naturally out of inference. The model is

P (y|x) =
1

Zx
exp

∑
i,j,l

λlfl(xi, xj , yij) +
∑
i,j,k

λ∗f∗(yij , yjk, yik)

 . (1)

Recently there has been increasing interest in study of the equivalence between graph par-
titioning algorithms and inference in certain kinds of undirected graphical models,e.g.
(Boykov et al., 1999). This graphical model is an example of such a case. With some
thought, one can straightforwardly see that finding the highest probability coreference so-
lution, y? = arg maxy P (y|x), exactly corresponds to finding the graph partitioning of a
(different) graph in which the mentions are the nodes and the edge weights are the (log)
clique potentials on the pair of nodes〈xi, xj〉 involved in their edge:

∑
l λlfl(xi, xj , yij),

wherefl(xi, xj , 1) = −fl(xi, xj , 0), and edge weights range from−∞ to +∞. Unlike
classic mincut/maxflow binary partitioning, here the number of partitions (corresponding
to entities) is unknown, but a single optimal number of partitions exists; negative edge
weights encourage more partitions.

Graph partitioning with negative edge weights is NP-hard, but it has a history of good
approximations, and several efficient algorithms to choose from. Our current experiments
use an instantiation of the minimizing-disagreements Correlational Clustering algorithm in
(Bansal et al., 2002). This approach is a simple yet effective partitioning scheme. It works
by measuring the degree of inconsistency incurred by including a node in a partition, and
making repairs. We refer the reader to Bansal et al. (2002) for further details.

The resulting solution does not make pairwise coreference decisions independently of each
other. It has a significant “relational” nature because the assignment of a node to a par-
tition (or, mention to an entity) depends not just on a single low distance measurement
to one other node, but on its low distance measurement to all nodes in the partition (and
furthermore on its high distance measurement to all nodes of all other partitions). For ex-
ample, the “Mr. Powell”/“Powell”/“she” problem discussed in the introduction would be



prevented by this model because, although the distance between “Powell” and “she” might
grammatically look low, the distance from “she” to another member of the same partition,
(“Mr. Powell”) is very high.

Interestingly, in our model, the distance measure between nodes is learned from labeled
training data. That is, we use data,D, in which the correct coreference partitions are
known in order to learn a distance metric such that, when the same data is clustered, the
correct partitions emerge. This is accomplished by maximum likelihood—adjusting the
weights,λ, to maximize the product of Equation 1 over all instances〈x,y〉 in the training
set. Fortunately this objective function is concave—it has a single global maximum—
and there are several applicable optimization methods to choose from, including gradient
ascent, stochastic gradient ascent and conjugate gradient; all simply require the derivative
of the objective function. The derivative of the log-likelihood,L, is

∂L

∂λl
=

∑
〈x,y〉∈D

∑
i,j,l

fl(xi, xj , yij)−
∑
y′

PΛ(y′|x)
∑
i,j,l

fl(xi, xj , y
′
ij)

 ,

wherePΛ(y′|x) is defined by Equation 1, using the current set ofλ parameters,Λ, and∑
y′ is a sum over all possible partitionings.

The number of possible partitionings is exponential in the number of mentions, so for
any reasonably-sized problem, we obviously must resort to approximate inference for the
second expectation. A simple option is stochastic gradient ascent in the form of a voted
perceptron (Collins, 2002). Here we calculate the gradient for a single training instance at a
time, and rather than use a full expectation in the second line, simply using the single most
likely (or nearly most likely) partitioning as found by a graph partitioning algorithm, and
make progressively smaller steps in the direction of these gradients while cycling through
the instances,〈x,y〉 in the training data. Neither the full sum,

∑
y′ , or the partition func-

tion, Zx, need to be calculated in this case. Further details are given in (Collins, 2002).

3 Experiments with Noun Coreference

We present experimental results on natural language noun phrase coreference using Model
3 applied to two applicable data sets: the DARPA MUC-6 corpus, and a set of 117 stories
from the broadcast news portion of the DARPA ACE data set. Both data sets have annotated
coreferences. We pre-process both data sets with the Brill part-of-speech tagger.

We compare our Model 3 against two other techniques representing typical approaches to
the problem of identity uncertainty. The first is single-link clustering with a threshold,
(single-link-threshold), which is universally used in database record-linkage and citation
reference matching (Monge & Elkan, 1997; Bilenko & Mooney, 2002; McCallum et al.,
2000; Cohen & Richman, 2002). It forms partitions by simply collapsing the spanning
trees of all mentions with pairwise distances below some threshold. For each experiment,
the threshold was selected by cross validation.

The second technique, which we callbest-previous-match, has been used in natural lan-
guage processing applications (Morton, 1997; Ge et al., 1998; Ng & Cardie, 2002). It
works by scanning linearly through a document, and associating each mention with its
best-matching predecessor—best as measured with a single pairwise distance.

In our experiments, both single-link-threshold and best-previous-match implementations
use a distance measure based on a binary maximum entropy classifier—matching the prac-
tice of Morton (1997) and Cohen and Richman (2002).

We use an identical feature set for all techniques, including our Method 3. The features,
typical of those used in many other NLP coreference systems, are modeled after those
in Ng and Cardie (2002). They include tests for string and substring matches, acronym



matches, parse-derived head-word matches, gender, WORDNET subsumption, sentence
distance, distance in the parse tree; etc., and are detailed in an accompanying technical
report. They are quite non-independent, and operate at multiple levels of granularity.

Table 1 shows standard MUC-
ACE MUC-6 MUC-6
(Proper) (Proper) (All)

best-previous-match 90.98 88.83 70.41
single-link-threshold 91.65 88.90 60.83
Model 3 93.96 91.59 73.42

Table 1: F1 results on three data sets.

style F1 scores for three experi-
ments. In the first two experi-
ments, we consider only proper
nouns, and perform five-fold cross
validation. In the third exper-
iment, we perform the standard
MUC evaluation, including all

nouns—pronouns, common and proper—and use the standard 30/30 document train/test
split; furthermore, as in Harabagiu et al. (2001), we consider only mentions that have
a coreferent. Model 3 out-performs both the single-link-threshold and the best-previous-
match techniques, reducing error by 28% over single-link-threshold on the ACE proper
noun data, by 24% on the MUC-6 proper noun data, and by 10% over the best-previous-
match technique on the full MUC-6 task. All differences from Model 3 are statistically
significant. Historically, these data sets have been heavily studied, and even small gains
have been celebrated.

Our overall results on MUC-6 are slightly better (with unknown statistical significance)
than the best published results of which we are aware with a matching experimental design,
Harabagiu et al. (2001), who reach 72.3% using the same training and test data.

4 Related Work and Conclusions

There has been much related work on identity uncertainty in various specific fields. Tra-
ditional work in de-duplication for databases or reference-matching for citations measures
the distance between two records by some metric, and then collapses all records at a dis-
tance below a threshold,e.g.(Monge & Elkan, 1997; McCallum et al., 2000). This method
is not relational, that is, it does not account for the inter-dependent relations among multi-
ple decisions to collapse. Most recent work in the area has focused on learning the distance
metric (Bilenko & Mooney, 2002; Cohen & Richman, 2002) not the clustering method.

Natural language processing has had similar emphasis and lack of emphasis respectively.
Pairwise coreference learned distance measures have used decision trees (McCarthy &
Lehnert, 1995; Ng & Cardie, 2002), SVMs (Zelenko et al., 2003), maximum entropy clas-
sifiers (Morton, 1997), and generative probabilistic models (Ge et al., 1998). But all use
thresholds on a single pairwise distance, or the maximum of a single pairwise distance to
determine if or where a coreferent merge should occur.

Pasula et al. (2003) introduce a generative probability model for identity uncertainty based
on Probabilistic Relational Networks networks. Our work is an attempt to gain some of the
same advantages that CRFs have over HMMs by creating conditional models of identity
uncertainty. The models presented here, as instances of conditionally-trained undirected
graphical models, are also instances of relational Markov networks (Taskar et al., 2002)
and conditional Random fields (Lafferty et al., 2001). Taskar et al. (2002) briefly discuss
clustering of dyadic data, such as people and their movie preferences, but not identity
uncertainty or inference by graph partitioning.

Identity uncertainty is a significant problem in many fields. In natural language processing,
it is not only especially difficult, but also extremely important, since improved corefer-
ence resolution is one of the chief barriers to effective data mining of text data. Natural
language data is a domain that has particularly benefited from rich and overlapping fea-
ture representations—representations that lend themselves better to conditional probability
models than generative ones (Lafferty et al., 2001; Collins, 2002; Morton, 1997). Hence
our interest in conditional models of identity uncertainty.
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