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Abstract

Chinese word segmentation is a difficult,
important and widely-studied sequence
modeling problem. Conditional Random
Fields (CRFs) are a new discriminative
sequence modeling technique that sup-
ports the incorporation of many rich fea-
tures. This paper demonstrates the abil-
ity of CRFs to easily integrate domain
knowledge, and thus reduce the need for
labeled data. Using readily-available do-
main knowledge in the CRF’s feature def-
initions we show that, even training on as
few as 140 segmented Chinese sentences,
we can achieve world-class segmentation
accuracy. Furthermore, when training on
more data, our approach yields segmen-
tation F1 of 97.5% with the Penn Chi-
nese Treebank, and realistic, incomplete
lexicons—a 50% reduction in error com-
pared with the previously best published
results of which we are aware. We also in-
troduce two alternative prior distributions
for CRF’s learned weights.

1 Introduction and Related Work

Unlike western languages, Chinese is not written
with spaces separating words. Some words consist
of a single Chinese character, but many words con-
sist of two, three, four or more characters. A human
reader of Chinese will naturally segment the charac-
ter stream into words in order to discern its mean-

ing. It is generally accepted, therefore, that a neces-
sary first step in most Chinese language technology
applications (including document retrieval, summa-
rization and extraction) is to segment the character
stream into words.

The problem of Chinese word segmentation has
been widely studied, and approached from several
different angles. Some researchers have used a large
lexicon of Chinese words and simple rules to se-
lect among several different segmentations consis-
tent with the lexicon (Chen and Liu, 1992; Wu and
Tseng, 1993). However these approaches have been
limited by the impossibility of creating a lexicon that
includes all possible Chinese words and by the lack
of statistical sophistication in the rules.

Others have used unsupervised learning tech-
niques and strong statistical techniques to train on a
large body of unsegmented Chinese text (Ando and
Lee, 2000). Some also incorporate lexicons (Ponte
and Croft, 1996; Peng and Schuurmans, 2001).
They successfully cluster characters sequences into
words by using the relative predictabilty of the next
character. However, the lack of supervision funda-
mentally prevents this approach from being able to
separate the words of new highly correlated word
sequences such as idioms and common phrases.

In response, others have taken advantage of the
availabilty of human-segmented Chinese corpora,
and used supervised machine learning methods—
including techniques such as finite state transducers
(Sproat et al., 1996), hidden Markov models (Tea-
han et al., 2000), maximum entropy classifiers and
transformation-based learning (Xue and Converse,
2002). However, the amount of labeled training data



will always be limited, and given the large number
of parameters that must be learned in these models,
performance degredation due to over-fitting is often
significant. This over-fitting could be ameliorated
by use of domain knowledge to provide prior biases,
but models that combine the sophistication of finite
state decoding with the ability to integrate domain
knowledge have previously been elusive.

Conditional Random Fields (CRFs) (Lafferty et
al., 2001) are recent models that have the ability to
combine rich domain knowledge, with finite-state
decoding, sophisticated statistical methods, and dis-
criminative, supervised training. In their most gen-
eral form, they are arbitrary undirected graphical
models trained to maximize the conditional proba-
bility of the desired outputs given the corresponding
inputs. In the special case we use here, they can be
roughly understood as discriminatively-trained hid-
den Markov models with next-state transition func-
tions represented by exponential models (as in max-
imum entropy classifiers), and with great flexibilty
to view the observation sequence in terms of arbi-
trary, overlapping features, including long-range de-
pendencies, and multiple levels of grainularity.

This paper demonstrates the success of CRFs on
Chinese word segmentation, with special focus on
reducing the need for labeled training data by in-
jecting domain knowledge into the model. We be-
lieve that machine learning models should not be
trained tabula rasa—instead, we should use models
that will let their users easily integrate background
knowledge whenever it is available.

To apply CRFs to Chinese word segmentation, we
first cast segmentation as a sequence labeling prob-
lem: each character that begins a word is labeled
with the START tag, every other character is labeled
with the NONSTART tag. The task of a trained CRF
is to recover the sequence of tags given an unlabeled
(unsegmented) sentence of Chinese characters. This
is performed by constructing a CRF whose states are
each associated with a tag, then running an analogue
of the Viterbi algorithm to efficiently find the most
likely state sequence given the input character se-
quence. Finally we then output the tags associated
with the states in that state sequence. We incorporate
strong domain knowledge into our model by making
use of 28 different special-purpose lexicons of Chi-
nese words and characters that are readily available

from the Internet and other sources. The various lex-
icons include common surnames, country names, lo-
cation names, job titles, punctuation characters, dig-
its, and characters that indicate the word endings of
adjectives and adverbs. The features used by the
CRF are conjunctions of position-shifted member-
ship queries of these lexicons.

Comparing Chinese word segmentation accura-
cies can be difficult because many papers use differ-
ent data sets and ground-rules. Some published re-
sults claim 98% or 99% segmentation precision and
recall, e.g. (Chen and Liu, 1992), but these either
count only the testing words that occur in the lexi-
con, or use unrealistic lexicons that have extremely
small or artificially non-existant out-of-vocabulary
rates, or use short sentences with many numbers. On
the more difficult Penn Chinese Treebank data, the
best performance of which we are aware is F1 of
95.2% (Xue and Converse, 2002). In correspond-
ingly careful experiments with a set-aside test-set,
we have obtained F1 of 97.5% on Chinese Tree-
bank, cutting error nearly by half. In our test set,
5% of the words are out-of-vocabulary; of these
the CRF segments 87% correctly. Notably, when
trained with only 140 sentences, CRFs still reach
F1 95.7%. A CRF trained with character features
instead of the domain-knowledge-laden lexicon fea-
tures obtains only F1 92.6% on the same amount of
training data.

Pointers to publicly-available Java source code for
training and testing, our lexicons, and an easily de-
ployed pre-trained segmenter will be provided in the
final copy of this paper.

This paper also presents two alternate priors dis-
tributions for the learned weights of CRFs, de-
signed to form “sparser” solutions than the tradi-
tional Gaussian prior. However, we find that these
alternatives do not improve the performance of Chi-
nese word segmentation.

2 Conditional Random Fields

Conditional Random Fields (CRFs) (Lafferty et al.,
2001) are undirected graphical models used to cal-
culate the conditional probability of values on des-
ignated output nodes given values on designed input
nodes.

In the special case in which the designated output



nodes of the graphical model are linked by edges in a
linear chain, CRFs make a first-order Markov inde-
pendence assumption among output nodes, and thus
correspond to finite state machines (FSMs). Thus,
in this case CRFs can be roughly understood as
conditionally-trained hidden Markov models. CRFs
of this type are a globally-normalized extension to
Maximum Entropy Markov Models (MEMMs) (Mc-
Callum et al., 2000) that avoid the label-bias prob-
lem (Lafferty et al., 2001). Although the details of
CRFs have been introduced elsewhere, we present
them here in moderate detail for the sake of clarity,
and because we use a different training procedure.

Let ���������
	��
�
	
����������� be some observed input
data sequence, such as a sequence of Chinese char-
acters, (the values on � input nodes of the graphi-
cal model). Let � be a set of FSM states, each of
which is associated with a label, ����� , (such as a
label NOTSTART). Let � ����� �
	!���"	
�����#�$�%� be some
sequence of states, (the values on & output nodes).
CRFs define the conditional probability of a state se-
quence given an input sequence as

p ')(���* �,+�� -.%/103254 6 �78:9 � 7
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>
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where

.)/
is a normalization factor over all state

sequences,

>F; ( � 8�? �$	!� 8 	��G	BA�+ is an arbitrary feature
function over its arguments, and

< ;
is a learned

weight for each feature function. A feature func-
tion may, for example, be defined to have value 0 in
most cases, and have value 1 if and only if � 8�? � is
state #1 (which may have label NOTSTART), and � 8
is state #2 (which may have label START), and the
observation at position A in � is a Chinese charac-
ter appearing in the lexicon of surnames. Higher

<
weights make their corresponding FSM transitions
more likely, so the weight

< ;
in this example should

be positive since Chinese surname characters often
occur at the beginning of a word. More generally,
feature functions can ask powerfully arbitrary ques-
tions about the input sequence.

CRFs define the conditional probability of a label
sequence based on total probability over the state se-
quences,

p ' (�HB* �,+�� 7IBJ KMLNIPO 9RQ p ' (���* �,+S	

where �B(�� + is the sequence of labels corresponding
to the labels of the states in sequence � .

Note that the normalization factor,
.T/

, (also
known in statistical physics as the partition func-
tion) is the sum of the “scores” of all possible state
sequences,.%/ � 7UBV"WYX 032Y4 6 �78:9 � 7 ; < ;
>
; ( � 8�? �$	!� 8 	��@	BAB+DCZ	
and that the number of state sequences is exponen-
tial in the input sequence length, & . In arbitrarily-
structured CRFs, calculating the partition function in
closed form is intractable, and approximation meth-
ods such as Gibbs sampling or loopy belief propaga-
tion must be used. In linear-chain-structured CRFs,
as we have here for sequence modeling, the parti-
tion function can be calcuated very efficiently by
dynamic programming. The details are given in the
following subsection.

2.1 Efficient Inference in CRFs

As in the forward-backward for hidden Markov
models (HMMs) (Rabiner, 1990), the probability
that a particular transition was taken between two
CRF states at a particular position in the input se-
quence can be calculated efficiently by dynamic pro-
gramming. We can define slightly modified “for-
ward values”, [ 8 ( �$\]+ , to be the probability of arriv-
ing in state � \ given the observations ���5�$	
������� 8 � . We
set [_^
( �
+ equal to the probability of starting in each
state � , and recurse:

[ 8:` � ( �
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The backward procedure and the remaining details
of Baum-Welsh are defined similarly.

.T/
is thenf U [ � ( �"+ . The Viterbi algorithm for finding the

most likely state sequence given the observation se-
quence can be correspondingly modified from its
original HMM form.

2.2 Training CRFs

The
<

weights of a CRF are typically set to
maximize conditional log-likelihood, g , of la-
beled sequences in some training set, h �
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where the second sum is a Gaussian prior over pa-
rameters, with variance

z
, that provides smoothing

to help cope with sparsity in the training data (Chen
and Rosenfeld, 1999).

When the training labels make the state sequence
unambiguous (as they often do in practice), the like-
lihood function in exponential models such as CRFs
is convex, so there are no local maxima, and thus
finding the global optimum is guaranteed. It is not,
however, straightforward to find it quickly. Param-
eter estimation in CRFs requires an iterative pro-
cedure, and some methods require fewer iterations
than others.

Although the original presentation of CRFs (Laf-
ferty et al., 2001) described training procedures
based on iterative scaling (Lafferty et al., 2001), it
is significantly faster to train CRFs and other “maxi-
mum entropy”-style exponential models by a quasi-
Newton method, such as L-BFGS (Byrd et al., 1994;
Malouf, 2002; Sha and Pereira, 2002). This method
approximates the second-derivative of the likelihood
by keeping a running, finite window of previous
first-derivatives. Sha and Pereira (2002) show that
training CRFs by L-BFGS is several orders of mag-
nitude faster than iterative scaling, and also signifi-
cantly faster than conjugate gradient.

L-BFGS can simply be treated as a black-box op-
timization procedure, requiring only that one pro-
vide the first-derivative of the function to be opti-
mized. Assuming that the training labels make the
state paths unambiguous, let � L jkO denote that path,
then the first-derivative of the log-likelihood is{ g{ < ; � |} l7j 9 �Y~ ; (�� L jkO 	�� LujSO +D���w

|} l7j 9 � 7 I p ')(���* � LujSO + ~ ; (�� 	�� L jkO + ���w < ;z
where ~ ; (�� 	���+ is the “count” for feature � given �
and � , equal to the sum of

>e; ( � 8�? �$	!� 8 	��G	BA�+ values
for all positions, A , in the sequence � . The last term,< ;
� z

, is the derivative of the Gaussian prior.

The upper parenthesized term corresponds to the
expected count of feature � given that the training
labels are used to determine the correct state paths.
The lower parenthesized term corresponds to the ex-
pected count of feature � using the current CRF
parameters, � , to determine the likely state paths.
Matching simple intuition, notice that when the state
paths chosen by the CRF parameters match the state
paths from the labeled data, the derivative will be 0.

When the training labels do not disambiguate a
single state path, expectation-maximization can be
used to fill in the “missing” state paths.

2.3 Two Alternate Priors for CRFs

In previous unpublished experiments on named en-
tity recognition, the first author found that ob-
taining high accuracy required that some features
have large-magnitude

<
weights, but that the Gaus-

sian prior (which “punishes” weights by their value
squared), was preventing them from reaching this
magnitude. At the same time, the Gaussian prior
was only very weakly “punishing” low-magnitude
weights, and thus the resulting models had many
non-zero weights, but almost none above one.

Since the number of features in CRFs is often cre-
ated by a large power set of conjunctions, intuitively
one would expect that many features are irrelevant,
and should have zero weight, while others that have
sufficient training-data support should be allowed
more freedom in their range of weight value.

A linear (L1, abs (d� + -shaped), rather than
quadratic (L2, � � -shaped) penalty function would
come closer to this goal. It is well-known, for ex-
ample, in the support-vector machine literature, that
L1 loss functions encourage “sparse” solutions, in
which many weights for unimportant features are
nearly zero.

The absolute value function is not everywhere dif-
ferentiable, being undefined at zero. However, the
function (�� �
� + p�qFr (�� qe��� ( � < +B+ is everywhere differ-
entiable, and has an appealingly similar shape, as
well as two intuitively meaningful meta-parameters:� controls the slope of the line away from zero,
and

�
controls the “roundness” of the differentiable

curve close to zero. The derivative of this function
is � �����F� � ( < + . We call this a hyperbolic-L1 prior;
it has likely been used elsewhere on other contexts,
but we have not yet found reference to it.



An even more extreme embodiment of “sparse-
ness” and non-interference with other weights
would be a weight penalty function that rises away
from zero as previously, but becomes more flat fur-
ther out. This shape might be captured with a prior
such as (�� �
� + p�qFr (�� qe��� ( � < +B+ � abs ( < �"� + , where

�
is a

parameter that controls how far away from zero the
flattening begins.

We have experimented with the first, but not yet
the second. As will be described in section 5, on
Chinese word segmentation, we did not find the
hyperbolic-L1 prior to improve performance.

3 Use of Domain Knowledge with CRFs

One of the chief strengths of CRFs is their abil-
ity to easily incorporate arbitrary features of the in-
put sequence. This strength can be used with tra-
ditional HMM sequence modeling features, i.e. the
current token identity,1 by simply adding additional
features that query the identity of tokens before and
after the current token, as well as conjunctions of
these features. These additional features are highly
non-independent and would be quite problematic for
a generative model like an HMM—not to mention
the outright impossibility of a generative sequence
model depending on future, not yet generated ele-
ments of the sequence.

However, these type of features still do not take
full advantage of CRFs’ flexibility. This paper
strongly advocates learning that is not tabula rasa,
but rather incorporates as much domain knowledge
as possible. Doing so can improve generalization
and also greatly reduce the amount of labeled train-
ing data that is necessary. In language technology
applications, which often use models with extremely
large numbers of parameters, the need for large vol-
umes of labeled training data is often a bottleneck
to high accuracy. Methods that allow the straight-
forward incorporation of domain knowledge provide
an extra avenue for weak supervision, and reduce the
burden of data labeling.

Domain knowledge comes in many forms, nearly
all of which can be cast as features: gazeteers and
lexicons, lists of significant token suffixes and other
sub-constituents, hand-generated questions about

1for example, a feature defined to be non-zero only when the
current token is the Chinese character for “cat”)

Input: (1)Training set: sentences of Chinese text with hand-
segmented words, and (2) several lexicons of Chinese words
and characters belonging to different salient categrories (such
as location names, surnames, digits, etc).
Algorithm: Use a quasi-Newton method to set the parameters
of a CRF finite state model to maximize the conditional like-
lihood of START and NONSTART tags on the characters in the
training data.
Output: A finite state model that finds word boundaries in un-
segmented Chinese text by finding the most likely state (and
thus, tag) sequence using the Viterbi algorithm.

Figure 1: Outline of our algorithm.

entire regions of the sequence, even the output of
previous hand-built rules, expert systems and ad-hoc
solutions.

The next two sections describe such an approach
to Chinese word segmentation, and show positive
experimental results, including high accuracies with
extremely small amounts of labeled data.

4 CRFs plus Domain Knowledge for
Chinese Word Segmentation

Our approach to Chinese word segmentation com-
bines the strengths of (1) supervised machine learn-
ing trained on a hand-segmented corpus, (2) a rich
variety of domain-knowledge-laden lexicons which
reduce the need for large quantities of labeled data,
(3) a maximum-likelihood training method gauran-
teed to find the global optima, (4) a strong repre-
sentation of contextal information to help correctly
handle out-of-vocabulary (OOV) words, (5) and the
full statistical power of finite-state inference.

We cast the segmentation problem as one of se-
quence tagging. Chinese characters that begin a new
word are given the START tag, and characters in the
middle and at the end of words are given the NON-
START tag. The task of segmenting new, unseg-
mented test data becomes a matter of assigning to
it a sequence of tags (labels).

A conditional random field are configured as a fi-
nite state machine (FSM) for this purpose, and tag-
ging is performed using Viterbi to find the most
likely label sequence for a given character sequence.
The FSM may be first-order Markov, in which case
there is one state for each label, and the choice of
next label depends only on the single previous la-
bel and the input sequence. The FSM may also



be second-order Markov or higher. A second-order
FSM has a state for every possible pair of labels, and
the choice of next label depends on the previous two
labels.

Some previous methods have used a single large
lexicon of Chinese words, or a small collection
of “character class” definitions (such as digits and
punctuation marks) to help perform segmentation,
e.g. (Ponte and Croft, 1996; Xue and Converse,
2002). CRFs allow us to take this approach to the
extreme: we incorporate not a few, but a large va-
riety of different lexicons, each with different spe-
cialities and meanings. For example, one is simply a
very large dictionary of Chinese words, another is a
list of location names, others capture surnames, dig-
its, etc. The complete list our lexicons is given in the
next section.

The features used in our CRF are membership
queries of character subsegments in these lexicons;
for example, one feature might indicate that the sub-
sequence consisting of the previous character and
the current character appears in the lexicon of loca-
tions. We also add features that query lexicon mem-
bership of subsequences before and after the cur-
rent character. For example, a feature could ask if
the character three positions ahead appears in the
lexicon of organization name indicators. Further-
more we create new features out of two- and three-
element conjunctions of these atomic features, that
might ask, for example, if the character two posi-
tions previous is in the list of prepositions, and is the
character one position ahead in the list of verbs.

Because features that examine past and future
provide strong contextual clues, and because we use
the power of Viterbi for finite state inference, we can
usually successfully segment new words that don’t
appear in any of our lexicons. All our features are
binary-valued. Although we could also add con-
juncts indicating the lack of membership in a lexi-
con, we have not yet done this.

5 Experimental Results

We tested our approach using hand-segmented data
from the Penn Chinese Treebank (LDC-2001T11).
It consists of 325 Xinhua newswire articles on a
variety of subjects. We selected it because it is a
standard data set on which others have published re-

sults, and because it has long sentences, relatively
few numbers and large and rich vocabulary—all of
which make word segmentation more challenging.

In pre-processing this Chinese Treebank data, we
ignore all part-of-speech tags, and exclude all header
and title information, obtaining our training and test-
ing data from only the body of the articles. The ar-
ticle bodies contain a total of 3,811 sentences, com-
prising 96,653 words (10,653 of which are unique),
and 166,120 Chinese characters.

The test set for all experiments below consists of
the sentences of the articles whose file number in the
Treebank is evenly divisible by four. The sentences
from the other articles comprise the training set.
The training set contains 2,805 sentences (71,969
tokens2 , 62,145 words); the testing set, 1,006 sen-
tences (24,684 tokens, 21,109 words). The testing
set has 4,587 unique words, 1,688 (37%) of which
do not appear anywhere in the training set. This out-
of-vocabulary rate speaks to the large and varied vo-
cabulary in this data set, and the difficulty of this
segmentation task.

5.1 Lexicon Features as Domain Knowledge

Many lexicons of Chinese words and characters are
readily available from the Internet and other sources.
Our domain-knowledge-providing lexicons consist
of 28 lists of Chinese words and characters obtained
from several Internet sites,3 from BBN’s Chinese
named entity recognizer, and from a local native
speaker. They were all obtained independently of
LDC data. (We could have reasonably used the Penn
Chinese Dictionary and a word lexicon built from
the training corpus, but did not). The complete list
of our lexicons appears in figure 2.

Features used in our CRF are time-shifted con-
junctions of membership queries to these lexicons
of character subsequence windows size 1-8. An ad-
ditional set of features captures whether the current
character is equal to the character before or after it,
using shifts of up to 3 positions. Using the nota-
tion � 8 to indicate an individual feature, � , tested
at sequence position A , and � 8b� 8 a�� 8 a a indicate a con-
junction of three feature tests applied at various se-
quence positions, the complete set of time-shifting
patterns we use is: � 8 , � 8:` � , � 8�? � , � 8:` � , � 8�? � , � 8:`,� ,

2words plus punctuation
3e.g. http://www.mandarintools.com.



adjective ending character money
adverb ending character negative characters
building words organization indicator
Chinese number characters preposition characters
Chinese period (dot) provinces
cities & regions punctuation characters
countries Roman alphabetics
dates Roman digits
department characters stopwords
digit characters surnames
foreign name characters symbol characters
function words time
job titles verb characters
locations wordlist (188k lexicon)

Figure 2: Lexicons used in our experiments

� 8�?�� , � 8b��8 , � 8b��8:` � , � 8�? � ��8 , � 8b��8:` � , � 8�? � ��8 , � 8b��8:`,� ,� 8�?�� � 8 , � 8�? � � 8 � 8:` � . The total number of such fea-
tures appearing in the training set is 42,187. Given
that each of these features has a parameter on each
FSM transition, and that there are sequence-start
and -end weights for each state, our second-order
Markov CRF has a total of 337,500 parameters.

Using our Java implementation and a 1.6MHz
Pentium, training the CRF by L-BFGS on the 2805
sentences of the training set takes about 100 itera-
tions, 300 megabytes of memory and 5 hours. Seg-
menting one sentence from the test set takes less
than a tenth of a second.

Accuracy is measured in terms of percentage tags
correct, and segmentation precision, recall and F1.
Let � be the number of predicted segments, & be the
number of true segments, and ~ be the number of
predicted segments with perfect starting and ending
boundaries; then precision is ~ � � , recall is ~ � & .
F1 is the harmonic mean of precision and recall.

Results are given in Figure 3. On Chinese Tree-
bank with realistic, incomplete lexicons, the best
previous result of which we are aware is 95.2% F1
(Xue and Converse, 2002). CRFs produce 97.5%
F1, reducing error by half. Furthermore, this im-
proved performance was reached with significantly
less training data. As additional testament to the
training-data efficiency of our domain-knowledge-
laden features, notice that CRFs maintain high ac-
curacy with a shockingly small amount of training
data: with only 280 training sentences, CRFs still
out-perform previous methods; with only 56 labeled
sentences, they match the performance of Teahan et
al. (2000), which was trained on roughly 700-times

# training training testing segmentation
Method sentences tag acc. prec. recall F1

Peng ��� M ? 75.1 74.0 74.2
Ponte ? ? 84.4 87.8 86.0

Teahan � 40k ? ? ? 94.4
Xue � 10k 97.8 95.2 95.1 95.2
CRF 2805 99.9 97.3 97.8 97.5
CRF 1402 99.9 96.9 97.4 97.1
CRF 140 100 95.4 96.0 95.7
CRF 56 100 93.9 95.0 94.4
CRF 7 100 82.8 83.5 83.1

CRF+ 2805 100 99.6 99.7 99.6
CRF- 2805 99.9 92.6 92.6 92.6
CRF- 1402 100 90.6 90.4 90.5
CRF- 140 100 80.0 78.6 79.3
CRF- 7 100 60.4 59.0 59.7

Figure 3: Accuracy comparison in percentages.
Peng (Peng and Schuurmans, 2001), is an unsu-
pervised method. Ponte (Ponte and Croft, 1996),
is a lexicon-based method. Teahan (Teahan et al.,
2000), is a supervised generative FSM, Xue (Xue
and Converse, 2002), is a supervised maximum-
entropy method. CRF is the method described in
this paper. CRF+ is the same, using an artificially
complete lexicon that has a zero OOV rate. CRF-
uses traditional character-based features instead of
multiple lexicons.

as much data.
We were particularly pleased to see that CRF ac-

curacy is high even on words that appear in none
of our 30 lexicons. On the test set, there are 1134
out-of-vocabulary words, 985 of which the CRF cor-
rectly segments—a success rate of 87%. Brief scan-
ning of our results by a native speaker indicates that
some of the “errors” made by the CRF are actu-
ally judgement calls that could go either way, with
most of the true segmentation errors being in proper
names.

With the full training set CRFs are still over-fitting
(F1 on the training set is 99.7%), so CRFs would be
expected to do even better with more training data.
We might also do significantly better if we gathered
more words for our wordlist lexicon—when we ar-
tificially give CRFs a perfect lexicon by including
all words in our training and testing sets (CRF+ in
Figure 3), we obtain 99.6% F1.

To further demonstrate the advantages of domain-
knowledge-laden features, we also trained and tested
CRFs using only traditional character-based features



(CRF- in Figure 3). Features indicate the presence
of individual characters, as well as time-shifted con-
junctions, as before, with the following conjunc-
tion patterns: � 8 , � 8:` � , � 8�? � , � 8:` � , � 8�? � , � 8b��8:` � ,� 8�? � � 8 —resulting in about 400k features. Including
more context would have greatly enlarged the total
number of features, which wouldn’t appear helpful,
since the model was already badly over-fitting, (hav-
ing training F1 of 99.9% even with the maximum
amount of training data).

All of the above results use a Gaussian prior with
variance

z ��� , a value selected by cross-validation
on the training set. Alternative values of

z
running

from 0.1 to 10 did not have a high impact—all had
testing F1 above or near 97%. Experiments with the
hyperbolic-L1 prior also yielded results in the same
range, with none higher than 97.3%.

6 Conclusions

Conditional random fields support a strong, princi-
pled integration of finite-state inference, discrimina-
tive training, and the use of rich, arbitrary features.
When domain knowledge is incorporated into the
feature set, we can drastically reduce the need for
labeled training data.

We would expect our accuracy to rise even fur-
ther by performing cross-validated error analysis on
the training set, and by tuning the features and other
meta-parameters. It should also improve by further
enlarging our lexicons and increasing our amount of
labeled training data. In future work we also plan to
investigate the benefits of feature induction (which
could be used to discover those cases when captur-
ing individual Chinese characters would be helpful),
and investigate methods for training with combina-
tions of labeled and unlabeled data. Additionally,
we plan to apply our methods to segmenting other
Asian languages, such as Japanese and Thai.
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