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ABSTRACT
It is becoming increasingly common to construct databases
from information automatically culled from many heteroge-
neous sources. For example, a research publication database
can be constructed by automatically extracting titles, au-
thors, and conference information from online papers. A
common difficulty in consolidating data from multiple sources
is that records are referenced in a variety of ways (e.g. ab-
breviations, aliases, and misspellings). Therefore, it can be
difficult to construct a single, standard representation to
present to the user. We refer to the task of constructing
this representation as canonicalization. Despite its impor-
tance, there is little existing work on canonicalization.

In this paper, we explore the use of edit distance mea-
sures to construct a canonical representation that is “cen-
tral” in the sense that it is most similar to each of the dis-
parate records. This approach reduces the impact of noisy
records on the canonical representation. Furthermore, be-
cause the user may prefer different styles of canonicaliza-
tion, we show how different edit distance costs can result
in different forms of canonicalization. For example, reduc-
ing the cost of character deletions can result in represen-
tations that favor abbreviated forms over expanded forms
(e.g. KDD versus Conference on Knowledge Discovery and
Data Mining). We describe how to learn these costs from
a small amount of manually annotated data using stochas-
tic hill-climbing. Additionally, we investigate feature-based
methods to learn ranking preferences over canonicalizations.
These approaches can incorporate arbitrary textual evidence
to select a canonical record. We evaluate our approach on a
real-world publications database and show that our learning
method results in a canonicalization solution that is robust
to errors and easily customizable to user preferences.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management; H.2.8
[Information Systems]: Database Applications—data min-
ing
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1. INTRODUCTION
Consider a research publication database such as Citeseer1

or Rexa2 that contains records gathered from a variety of
sources using automated extraction techniques. Because the
data comes from multiple sources, it is inevitable that an
attribute such as a conference name will be referenced in
multiple ways. Since the data is also the result of extraction,
it may also contain errors. In the presence of this noise
and variability, the system must generate a single, canonical
record to display to the user.

Record canonicalization is the problem of constructing
one standard record representation from a set of duplicate
records. In many databases, canonicalization is enforced
with a set of rules that place limitations or guidelines for
data entry. However, obeying these constraints is often te-
dious and error-prone. Additionally, such rules are not ap-
plicable when the database contains records extracted auto-
matically from unstructured sources.

Simple solutions to the canonicalization problem are of-
ten insufficient. For example, one can simply return the
most common string for each field value. However, incom-
plete records are often more common than complete records.
For instance, this approach may canonicalize a record as “J.
Smith” when in fact the full name (John Smith) is much
more desirable.

In addition to being robust to noise, the system must also
be able to adapt to user preferences. For example, some
users may prefer abbreviated forms (e.g., KDD) instead of
expanded forms (e.g., Conference on Knowledge Discovery
and Data Mining). The system must be able detect and
react to such preferences.

In this paper, we first formalize the canonicalization prob-
lem and then propose three solutions. The first uses string
edit distance to determine which record is most central in
a set of records. This approach can mitigate the noise con-
tained in outlying records. To enable the system to adapt
to user preferences, the second solution optimizes the edit
distance parameters using human-labeled data. Finally, we

1www.citeseer.ist.psu.edu
2www.rexa.info



describe a feature-based solution that can flexibly incorpo-
rate textual evidence to select a canonical record. We again
estimate the parameters of this method from labeled data.
We show that this problem can be more naturally formu-
lated as a ranking task, rather than a classification task,
and modify the learning methods accordingly.

We perform several empirical comparisons of these ap-
proaches on publication records culled from the Web. The
results indicate that the feature-based approach significantly
outperforms competing approaches as well as a number of
simpler baselines. Furthermore, we show that the param-
eters of the feature-based approach can be estimated from
just a few training examples, and is quite robust to noise
that is common in automatically generated databases.

2. RELATED WORK
While there has been little work explicitly addressing canon-

icalization, the idea has been present in many application
and research areas. In this section we review several of these
applications as well as related work in the area of learning
string edit distance costs.

Tejada et al. [13] devise a system to automatically ex-
tract and consolidate information from multiple sources into
a unified database. When a user queries this database, mul-
tiple representations of an attribute are inevitable due to
naming inconsistencies across the various sources from which
they were drawn. Although object deduplication is the pri-
mary goal of the that research, canonicalization arises when
the system presents results to the user. Tejada et al. propose
ranking the strings for each attribute based on the user’s
confidence in the data source from which the string was ex-
tracted.

One difficulty in this approach is that if the data is ex-
tracted from a large number of sources, a non-trivial burden
is placed on the users, who may not have the expertise to
express preferences about each data source. Additionally,
the database must store source-specific meta information for
each string. Our canonicalization methods are adaptable to
any database, regardless of whether the source of the in-
formation is available. Additionally, we enable the user to
express preferences independent of the data source.

Other work has focused on learning the parameters of
string edit distance with encouraging results. Zhu and Unger
[15] apply string edit distances to the task of merging data-
base records. They observe that parameters cannot be opti-
mized individually due to the complex interaction between
various edit cost weights on the outcome. Additionally they
note that greedy methods are too likely to converge prema-
turely in local optima and that random restarts are unnec-
essarily expensive. Instead they propose a genetic algorithm
to learn the weights of each cost and find that it stabilizes
after 100 generations. In lieu of genetic approaches we pro-
pose learning the edit costs using either stochastic search,
or an exhaustive search over a relatively small discrete space
of possible parameter settings.

McCallum et al. [9] also use a discriminatively learned
edit distance to perform record deduplication. They extend
Zhu and Unger’s work by using a conditional random field
to learn the costs of a variety of flexible edit distance oper-
ations. However, they do not explore canonicalization.

Ristad and Yianilos [12] learn a probability distribution
over atomic string edit operations (insertion, deletion, sub-
stitution) and define a stochastic transducer that defines the

probability of a string as either the Viterbi sequence of edit
operations or the sum of all possible sequences of edit op-
erations required to produce that string. The parameters
of this generative model are learned using the expectation
maximization (EM) algorithm.

Bilenko and Mooney [1] present a method to learn edit
distance based similarity measures of each attribute between
records in order to perform deduplication. They extend the
work of Ristad and Yianilos [12] by accommodating affine
gaps. In similar fashion, the weights are learned iteratively
with EM.

Our learning methods differ from those outlined in Ristad
and Yianilos [12] and Bilenko and Mooney [1] in that we are
not concerned with learning a generative model. We pro-
pose two methods to learn edit distance parameter settings
using stochastic or exhaustive search. Additionally, we pro-
pose two feature-based methods that combine the outputs
of multiple parameter settings (i.e., multiple edit distance
models) and other sources of textual evidence into a dis-
criminative model of canonicalization.

Canonicalization has also been implicitly considered in
deduplication research. For example, Milch et al. [11] and
McCallum and Wellner [10] propose deduplication models
containing variables for canonical attributes of a record. The
variables are used to help deduplication, although the accu-
racy of the resulting canonical records is not optimized or
evaluated.

Recently, frameworks have been proposed to handle un-
certainty in databases, particularly those containing auto-
matically extracted records. One approach when consoli-
dating extractions from various sources is to perform some
type of weighted voting to determine which facts should
be inserted in the database [8]. Another approach is to
store the uncertainty of these extractions directly in the
database. This can be accomplished by storing the top n
most confident extraction results (along with correspond-
ing probabilities or confidence measures) for each desired
record. Gupta and Sarawagi [5] leverage confidence value
outputs from the extraction models to improve query re-
sults on databases containing uncertainty. Fundamentally
the problem is canonicalization because the system is faced
with a choice when presenting multiple query results with
various confidence values to the user. It is analogous to our
canonicalization task except that we do not have the luxury
of confidence values. While the inclusion of such values is
clearly beneficial, we propose methods that achieve canon-
icalization in absence of such information (and often this
information is strictly unavailable).

3. PROBLEM DEFINITION
Let a record R be a set of fields, R = {F1 . . . Fp}. Let

field Fi be an attribute-value pair 〈a, v〉. Table 1 shows
three example records.

Databases constructed from multiple sources often accu-
mulate multiple versions of the same record. Record dedu-
plication is the task of detecting these different versions.
Table 1 shows three records that have been predicted to be
duplicates. In fact, record (c) refers to a book chapter ver-
sion, whereas (a) and (b) refer to conference proceedings.

Record deduplication is a difficult problem that has been
well-studied. However, in this paper we are interested in
a subsequent step: how to present the user one canonical
representation of a record.



author Brian Milch et al.

title
BLOG: Probabilistic Models

with Unknown Objects
venue IJCAI
editor
pages

(a)

author B. Milch et al.

title
BLOG: Probabilistic Models

with Unknown Objects
venue Intl. Conf. on AI
editor
pages 1352-1359

(b)

author Brian Milch et al.

title
BLOG: Probabilistic Models

with Unknown Objects
venue
editor L. Getoor and B. Taskar
pages

(c)

Table 1: Three publication records predicted to be duplicates. Note that a de-duplication error has erro-
neously merged record (c) (a book chapter) with the other two conference papers. De-duplication errors, as
well as misspellings, abbreviations, and aliases, can make canonicalization difficult.

We define the canonicalization problem as follows: Given
a set of duplicate records R = {R1 . . . Rk}, create a canon-
ical record R∗ that summarizes the information in R. We
refer to the canonicalization operation as C(R)

Note that it is not always clear what the optimal canoni-
calized record should be. Indeed, different users may prefer
different forms of canonicalization. For example, some users
may prefer the abbreviated conference string IJCAI, while
others may prefer the expanded string International Joint
Conference on Artificial Intelligence. However, there are a
few desiderata of a good canonicalization:

• Error-free: The canonical record should not contain
errors, such as misspellings or incorrect field values.
This is especially a concern when the data has been
automatically extracted from noisy sources (e.g. when
text must be extracted from a PDF file and field as-
signments are automated). In these cases, there may
exist outlying records that contain erroneous data. The
canonicalizer should attempt to minimize the effect of
these errors.

• Complete: The canonical record should contain all
the accurate information contained in the duplicate
records. Thus, even if not all records contain a date
field, the field should be included in the canonical
record.

• Representative: The canonical record should reflect
the commonality among the duplicate records. Thus,
the canonical record should in some sense be similar
to all of the duplicate records.

4. THREE CLASSES OF CANONICALIZA-
TION SOLUTIONS

We now outline three classes of canonicalization solutions,
in increasing order of ambition. We will then explore the
first solution class in more depth.

4.1 Record Selection
The record selection approach to canonicalization selects

an existing record as its output. For example, C(R) must
select from the three records in Table 1. Record selection
algorithms must ensure that the selected record contains no
errors, and that is is representative of other records. Note
that this approach is most prone to errors of incompleteness,
since one record may not contain all the fields present in the
duplicates. For example, selecting record (a) in Table 1 will
omit the page numbers, but selecting record (b) will omit
the full first name of the author.

4.2 Record Merging
The record merging approach to canonicalization constructs

a canonical record by piecing together fields from different
records.

While this approach can increase the completeness of canon-
icalization, it does so at the risk of introducing errors. In
the worst case, an error in record deduplication may merge
together records that in fact refer to different objects. Con-
structing one record containing fields from these non-duplicate
records can result in a canonical record containing invalid
information. For example, a record merging approach may
return the record in Table 2:

author Brian Milch et al.

title
BLOG: Probabilistic Models

with Unknown Objects
venue Intl. Conf. on AI
editor L. Getoor and B. Taskar
pages 1352-1359

Table 2: Possible record merging canonicalization
for the records in Table 1.

While this result is complete, it erroneously includes the
editor field from record (c), which is not truly a duplicate.
To address this issue, it may be useful to consider measures
of field compatibility, as in Wick et al. [14].

4.3 Record Generation
The record generation approach to canonicalization is an

extension of the record merging approach that may also pro-
pose field values that do not explicitly exist in any of the
record duplicates. This allows the system to predict field
values based on pattern analysis. For example, a record
generation approach may return the following record:

author Brian Milch et al.

title
BLOG: Probabilistic Models

with Unknown Objects

venue
International Joint Conference

on Artificial Intelligence
editor
pages 1352-1359

Table 3: Possible record generation canonicalization
for the records in Table 1.



Here, the system has generated an expanded venue value
from the abbreviated form, even though this expanded form
does not appear among the duplicate records. This predic-
tive operation can be accomplished either by learning sta-
tistical patterns in the database, or by a pattern-matching
approach.

While in this case record generation succeeded, in general
positing field values that do not exist in any of the records
can be quite dangerous and lead to unacceptable errors.

These three solution classes motivate a number of im-
plementations and experiments. In this paper, we describe
three record selection methods and perform experiments to
measure their effectiveness.

5. THREE PROPOSALS FOR RECORD SE-
LECTION CANONICALIZATION

5.1 Edit distance with fixed costs
The motivation for our approach is to minimize the effect

of pre-processing errors on canonicalization. As we have de-
scribed, errors from PDF-to-text conversions, misspellings,
and incorrect deduplication can lead to poor canonicaliza-
tion choices.

We make two assumptions about the behavior of pre-
processing errors:

• Correct records are more common than incorrect records.
That is, most records are error-free.

• Errors have high variance. For example, it is unlikely
for many records to have the same exact spelling mis-
take.

With these assumptions in mind, we propose selecting the
record that has the greatest average similarity to every other
document. We define the distance between two records as
the string edit distance between them.

Let D : Ri × Rj 7→ R+ be the edit distance between two
records. Given a set of duplicate records R = {R1 . . . Rk},
we define the average edit distance of record Ri as

A(Ri) =

P
Rj∈R D(Ri, Rj)

k
(1)

The canonical record we return is the one with minimum
average distance to every other string:

Cd(R) = argmin
Ri∈R

A(Ri)

We refer to Cd(R) as the edit distance canonicalizer.
We now must decide on the form of D, the metric defining

the distance between two strings. A natural choice is the
Levenshtein distance: the number of character insertions,
deletions, and replacements required to transform one string
into another [6]. The recursive definition of the Levenshtein
distance for strings sn and tm with length n and m is the
following:

D(sn, tm) = min

8><>:
cr(sn, tm) + D(sn−1, tm−1)

ci + D(sn−1, tm)

cd + D(sn, tm−1)

(2)

where cr(sn, tm) is the replacement cost for swapping char-
acter sn with character tm, ci is the insertion cost, and cd

Algorithm 1 Exhaustive cost search

1: Input:
Training set S
Initial costs c = {ci, cd, c=r , c 6=r }
max, min, step

2: while More Costs do
3: c ⇐ NextCosts(c, max, min, step)
4: if L(c,S) < bestLoss then
5: bestLoss ⇐ L(c,S)
6: c∗ ⇐ c
7: end if
8: end while

is the deletion cost. We can further define the replacement
cost as

cr(sn, tm) =

(
c6=r if sn 6= tm

c=
r if sn = tm

(3)

That is, c6=r is the cost of replacing one character with an-
other, and c=

r is the cost of copying a character from one
string to the next. We refer to c 6=r as the substitution cost,
and c=

r as the copy cost.
The value of the edit distance costs greatly effects the out-

put of the system. For example, if ci is small, then abbre-
viated strings will have a small distance to their expanded
version. Abbreviated strings will therefore have lower values
of A(Ri).

Rather than requiring the user to manually tune these
costs, in the next section we propose ways of learning these
costs automatically given labeled examples.

5.2 Edit distance with learned costs
Suppose the user provides a labeled training set

S = {〈R1, l1〉 . . . 〈Rn, ln〉}

where each set of duplicate records Ri = {R1 . . . Rk} is an-
notated with label li ∈ {1 . . . k}, indicating which of the
duplicates should be selected as the canonical record (i.e.,
Rli ∈ R is the true canonical record). We wish to use S to
learn the weights of D.

There has been a fair amount of work on methods to auto-
matically learn edit distance costs, mostly applied to record
de-duplication; (see Section 2). However, we are not aware
of any work that learns edit distance costs for canonicaliza-
tion.

We propose two simple but effective methods to learn edit
distance costs from training data: exhaustive search and
stochastic hill climbing.

5.2.1 Exhaustive search
The simplest method is to exhaustively enumerate set-

tings of each cost and maximize the canonicalization perfor-
mance on the training set.

Let L(c,S) be the loss function for an assignment to c. For
example, L may be the proportion of records in S for which
Cd(R) returns a non-canonical record; i.e. Cd(Ri) 6= Rli .

We wish to optimze c as follows:

c∗ = argmin
c

L(c,S) (4)

Since we must discretize the cost settings to perform ex-
haustive search, the input is the following:

• min: The minimum cost value



Algorithm 2 Stochastic cost search

1: Input:
Training set S
Initial costs c = {ci, cd, c=r , c 6=r }
max, min, step

2: for i <NumIterations do
3: c ⇐ SampleCostElement(c)
4: c ⇐ RandomUpdate(c, step, max, min)
5: c ⇐ NextCosts(c, max, min, step)
6: if L(c,S) <bestLoss then
7: bestLoss ⇐ L(c,S)
8: c∗ ⇐ c
9: end if
10: i ⇐ i + 1
11: end for

• max: The maximum cost value

• step: The amount to perturb each cost to obtain a
new setting.

Search proceeds by cycling through each setting of c and
returning the best found setting c∗. The details are given
in Algorithm 1. The method NextCosts generates the next
cost setting as determined by the step size.

5.2.2 Stochastic hill-climbing
Computing L(c,S) requires computing Cd(R) for all Ri ∈

S. This computational cost limits the number of settings
we can enumerate using exhaustive search. Instead, we pro-
pose a simple stochastic hill-climbing algorithm to optimize
Equation 4. Given an initial setting for c, the algorithm pro-
poses a modification to c and accepts the change if L(c,S)
decreases. This can be understood as simulated anneal-
ing without the temperature parameter. The details of this
method are given in Algorithm 2.

The method SampleCostElement samples a cost uniformly
from the cost vector. The method RandomUpdate uni-
formly chooses between incrementing or decrementing c by
step.

5.3 Feature-based Ranking Models
While the adaptive edit distance approach to record se-

lection can be simple and effective, it is limited by the small
number of tunable parameters (the four costs), which limits
the expressivity of the model.

In this section, we propose two feature-based learning ap-
proaches that enable the use of arbitrary features over the
records, including the output of various edit distance mea-
sures.

Consider a set of duplicate records R = {R1 . . . Rk}. Let
Φi = {φ1(Ri) . . . φm(Ri)} be a vector of binary feature func-
tions φ : R 7→ {0, 1} that compute evidence indicating
whether Ri should be selected as the canonical record. For
example, φj(Ri) may be 1 if record Ri is the longest record
in R. Let Λ = {λ1 . . . λm} be a vector of real-valued weights
associated with each feature.

We can compute a score for the event that Ri is chosen
as the canonical record by taking the dot product of the
features and weights:

τ(Ri, Λ) = Φi · Λ

Below we describe two methods to estimate Λ from the
training set S.

5.3.1 Ranking Logistic Regression
The first method is based on logistic regression (some-

times called maximum entropy classification). Here, we
modify the traditional logistic regression loss function to
rank, rather than classify, instances.

Let the binary random variable Ci be 1 if and only if
record Ri is the true canonical record of R. Given Λ and F ,
we can compute the probability of Ci as follows:

p(Ci = 1|R, Λ) =
eτ(Ri,Λ)P

Rj∈R eτ(Rj ,Λ)

where the score for record Ri is normalized by the scores for
every other duplicate record.

Note that this formulation differs from traditional classifi-
cation, which computes an independent binary classification
decision for each record:

p(Ci = 1|R, Λ) =
eτ(Ri,Λ1)

eτ(Ri,Λ1) + eτ(Ri,Λ0)

where the parameters Λ1 represent the positive class, and
Λo represent the negative class.

By formulating canonicalization as a ranking task rather
than a classification task, we can compute a loss function
that is sensitive to competing records. This can be beneficial
for at least two reasons. First, if no record is error-free, a
classification loss function is forced to place a positive label
on a partially incorrect example. Second, if a non-canonical
record shares many features with the canonical record, a
classification loss function will erroneously penalize those
features. By focusing on the differences between examples,
a ranking loss function overcomes these deficiencies.

We can estimate Λ from the training set S by minimizing
the negative log-likelihood of the data given Λ:

L(Λ,S) = −
X

Ri∈S

log p(Cli |R, Λ) (5)

Note that this is the sum of probabilities for each of the cor-
rect canonical records for the current setting of Λ. We also
add a Gaussian prior over Λ with fixed mean and variance
to mitigate over-fitting. We find the setting of Λ that min-
imizes Equation 5 using limited-memory BFGS, a gradient
ascent method with a second-order approximation [7].

5.3.2 MIRA
MIRA (Margin Infused Relaxed Algorithm) is a relaxed,

online maximum margin training algorithm [4]. It iteratively
cycles through the training set and updates the parameter
vector with two constraints: (1) the true canonical record
must have a higher score than any other record by a given
margin, and (2) the change to Λ should be minimal. This
second constraint is to reduce fluctuations in Λ. Using the
same scoring function τ as in the previous section, this opti-
mization is solved through the following quadratic program:

Λt+1 = argmin
Λ

||Λt − Λ||2

s.t.

τ(Rli , Λ)− τ(Rj , Λ) ≥ 1 ∀Rj 6= Rli

In this case, the MIRA parameter update is a quadratic
program with constraint size equal to the number of non-
canonical records in the training example. This QP can be



solved efficiently using the Hildreth and D’esopo method [2].
To improve the stability of this online method, we average
the parameter vectors from each update at the end of train-
ing, as in voted perceptron [3].

6. EXPERIMENTS

6.1 Data
We collect 3,683 citations to 100 distinct papers from

Rexa, an online publications search engine.3 These citations
were automatically extracted from the headers of research
papers as well as from the reference section, and record
deduplication was performed automatically by the Rexa sys-
tem. The data therefore contains misspellings, PDF-to-text
errors, abbreviations, and possibly deduplication errors. To
construct a labeled data set, we collect the corresponding
citations to these papers from the Digital Bibliography and
Library Project (DBLP).4 The DBLP citations are manually
curated to ensure accuracy, so they provide a good source
of canonical examples. In fact, as part of its pipeline, Rexa
crawls the DBLP repository and performs record deduplica-
tion to merge citations together.

For these experiments, we focus on constructing the canon-
ical representation of the conference string for each paper.
This is arguably the most difficult field to canonicalize be-
cause of the prevalence of acronyms, abbreviations, and mis-
spellings.

Using the DBLP data, we construct two versions of the
dataset. In the first, the true canonicalization is the confer-
ence title acronym. This simulates the use case in which the
user desires abbreviated canonical forms. In the second ver-
sion, the true canonicalization is the expanded conference
title. This simulates the case when the user does not desire
any abbreviations in the canonical form. We refer to the
former version as the acronym dataset, and the latter as the
expanded dataset.

Table 4 shows an example with labels from each of the
datasets. We can see that the duplicate records contain a
variety of abbreviated forms, as well as PDF-to-text conver-
sion errors in the first and fourth duplicate records (Artifici
al,Conferenceonarti cial) that make canonicalization diffi-
cult.

Figure 1 shows the distribution of the number of dupli-
cates for each record in the dataset. As we can see, most
records have around 20 duplicates, but a few records have
over 200 duplicates.

We perform 5-fold cross validation on the data, with each
split containing 80 training examples and 20 testing exam-
ples. To evaluate performance, we consider two measures:

• Mean Reciprocal Rank (MRR): The average rank
among the duplicates given to the true canonical record.
The ranking is computed by sorting the records ac-
cording to their canonicalization score. This measure
is commonly used in information retrieval to evaluate
search results.

• Accuracy (Acc): The proportion of predicted canon-
ical records that are truly canonical. This can also be
understood as MRR at rank 1.

3Data is available at http://www.cs.umass.edu/∼culotta/
data/canonicalization.html
4http://dblp.uni-trier.de
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Figure 1: Distribution of number of duplicates per
record.

6.2 Systems
We evaluate eight different systems:

• Edit-Distance, Fixed Costs (ED-F) - Levenshtein
string distance canonicalizer with the default costs ci =
1, cd = 1, c6=r = 1, c=

r = 0. (See Section 5.1.)

• Edit-Distance, Exhaustive Cost Search (ED-E)
- Levenshtein string distance canonicalizer with costs
set by exhaustive search (See Section 5.2.1.) We set
max = 1.0, min = −1.0, and step = 0.5, resulting in
81 different settings.

• Edit-Distance, Stochastic Cost Search (ED-S)
- Levenshtein string distance canonicalizer with costs
set by stochastic search (See Section 5.2.2.) We set
step = 0.2 and perform 20 iterations.

• Logistic Regression (LR) - Feature-based ranking
model with exponential loss function. (See Section
5.3.1.)

• MIRA (M) - Feature-based ranking model with large-
margin loss function. (See Section 5.3.2.)

• Shortest (S) - A baseline method that ranks records
in increasing order of length.

• Longest (L) - A baseline method that ranks records
in decreasing order of length;

• Most Common (C) - Assign each record a count
equal to the number of exact string duplicates con-
tained in the record set. Rank records in decreasing
order of count.

The features for the feature-based canonicalizers are as
follows:

• Edit-distance features: We construct four different
edit-distance canonicalizers from four different setting
of the Levenshtein costs.5 For each cost setting, we

5(cd = c6=r = ci = 1, c=
r = 0); (cd = 0, c6=r = ci = 1, c=

r =
0); (cd = 1, c6=r = 0, ci = 1, c=

r = 0); (cd = c6=r = 1, ci = c=
r =

0)



acronym canonical record
In AAAI

expanded canonical record
In proceedings of the Ninth National Conference on Artificial Intelligence

duplicate records
In proceedings of the Ninth National Conference on Artifici al Intelligence

proc the 9th National Conf on AI
in proc AAAI

in proceedings of the Ninth National Conferenceonarti cial Intelligence

Table 4: An example of a set of conference strings to be canonicalized annotated with two versions of preferred
canonicalization: acronym and expanded forms.

canonicalizer MRR Acc Time (s)
LR .708 (.017) .6 (.015) 75 (5)
M .661 (.017) .55 (.035) 80 (4)

ED-S .597 (.053) .5 (.061) 278 (26)
ED-E .578 (.053) .5 (.061) 925 (65)

C .551 (.023) .53 (.043) .05 (.02)
ED-F .438 (.034) .37 (.04) 6 (1)

L .426 (.033) .28 (.03) .06 (.05)
S .087 (.007) 0 (0) .07 (.06)

Table 5: Mean reciprocal rank, accuracy, and run-
ning time on expanded dataset. The numbers in
parentheses are the standard error over five cross-
validation trials.

compute Cd(R) as in Equation 1. The binary features
for a record indicate if it is the first, second, or third
highest ranked record according to Cd(R) (for exam-
ple, one feature is ranked-second-by-canonicalizer3).
These features allow the classifier to serve as a “meta-
canonicalizer” by aggregating the output of many dif-
ferent canonicalizers.

• Text features: We compute several features that ex-
amine the properties of the strings themselves.

– Acronyms: This feature is true if the record con-
tains a token on a list of known acronyms (e.g.,
ICML).

– Abbreviations: This feature is true if the record
contains a token on a list of known abbreviations
(e.g., conf for conference and proc for proceed-
ings).

– Relative length: We compute the character length
of each record and create features that indicate if
a record is the first, second, or third longest or
shortest record.

6.3 Results
Tables 5 and 6 display results for the eight different meth-

ods on the acronym and expanded datasets.
From these results, we can conclude that the feature-based

canonicalizers consistently outperform the edit-distance canon-
icalizers. We can see that for the expanded data logistic re-
gression (LR) outperforms the fixed cost edit-distance (ED-
F) by 27% MRR, and further outperforms the stochastic
search edit distance (ED-S) by 11% MRR. The difference

canonicalizer MRR Acc Time (s)
M .94 (.014) .92 (.012) 103 (5)
LR .935 (.02) .92 (.025) 63 (5)

ED-E .868 (.027) .82 (.04) 866 (99)
ED-S .865 (.028) .82 (.04) 254(33)

S .767 (.038) .64 (.043) .02 (.004)
C .126 (.033) .06 (.024) .05 (.03)

ED-F .059 (.004) 0 (0) 6 (2)
L .049 (.003) 0 (0) .011 (.001)

Table 6: Mean reciprocal rank, accuracy, and run-
ning time on acronym dataset. The numbers in
parentheses are the standard error over five cross-
validation trials.

between the two feature-based canonicalizers is small: logis-
tic regression outperforms MIRA (M) by nearly 5% MRR
on the expanded data, but MIRA outperforms logistic re-
gression by .5% MRR on the acronym data. Similarly, the
difference between the two cost learning methods is small
(ED-S versus ED-E).

Furthermore, we can conclude that cost-learning greatly
improves the performance of the edit-distance canonicaliz-
ers, increasing MRR by nearly 16% on the expanded data
and by 80% on the acronym data. The pronounced differ-
ence on the acronym data can be attributed to the fact that
the default setting used in ED-F has unit cost for inserting
characters. This gives acronym records a large distance from
non-acronym records, making it unlikely they will have the
lowest average distance. However, the cost learning methods
can discover settings that do not penalize insertions, thereby
reducing the average edit-distance of acronyms.

None of the simpler baseline methods perform consistently
well across the two datasets. Simply choosing the shortest,
longest, or most common record is significantly worse than
using one of the more complex record selection algorithms
we propose.

6.4 Impact of features
We investigate the impact of features on the performance

of the feature-based canonicalizers. Table 7 displays per-
formance of the logistic regression method (LR) with and
without the textual features described in Section 6.2. These
results show that using edit-distance features alone still out-
performs the fixed-cost edit-distance canonicalizer ED-F by
nearly 6% (.496 versus .438 from Table 5). However, the
majority of the improvement of the feature-based classifiers
appears to come from textual features. This result suggests



features MRR Acc
edit-distance + text .708 (.017) .6 (.015)

edit-distance .496 (.027) .29 (.033)

Table 7: Mean reciprocal rank and accuracy of LR
on the expanded dataset with and without textual
features. The numbers in parentheses are the stan-
dard error over five cross-validation trials.

a simple approximation to improve the scalability of this
approach, which we discuss in Section 6.7.

6.5 Learning rates
In a real-world application, it may be difficult to obtain

labeled data from the user. We therefore perform exper-
iments to evaluate how many labeled examples are needed
to obtain accurate results. Figures 2 and 3 plot performance
as the proportion of training data used increases. As we can
see, using only 10% of the data (8 examples), performance
is already quickly approaching its maximum.

6.6 Robustness to noise
We perform additional experiments to measure how ro-

bust the methods are to the introduction of non-canonical
records. For each training example R, we introduce noise
as follows:

• Select an incorrect record uniformly at random Ri ∈ R
s.t. Ri 6= Rli .

• Add n duplicates of of Ri to R.

Figures 4 and 5 show results as n varies from 0 to 20.
We compare the four learning methods, as well as the Most
Common baseline (C). These figures show that the feature-
based methods are quite robust to noise, as their accu-
racy drops only slightly as n increases. The Most Common
baseline degrades significantly, which is unsurprising since
as n increases it is very likely that it chooses the incor-
rect record. The exhaustive cost-learning method also ap-
pears relatively robust; however the stochastic cost-learning
method degrades significantly.

6.7 Scalability
In Table 5 and 6 we report the wall-clock running time

of each method. Note that this includes the time to train
each method. The logistic regression requires about one
minute to train and evaluate on 80 training examples and
20 testing examples. Note that the long running times of
the cost-learning methods is high because for each setting
of costs, the average edit-distance for each record must be
recomputed to calculate the loss function. This is in contrast
to the feature-based methods, which uses fixed costs for the
edit-distance features.

For databases containing many records with many dupli-
cates, the computation of the average edit-distance may be-
come burdensome. The edit distance computation has time
complexity O(m2) where |R| = m. A(Ri) requires iterat-
ing over all records, and we must compute this m times.
Since the edit distance canonicalizer is used as input to
the feature-based canonicalizers, these have time complex-
ity Ω(m2). Thus, canonicalizing m records requires Ω(m2k)
time.
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Figure 2: Learning curves for expanded dataset.
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Figure 3: Learning curves for acronym dataset.

We can alleviate the quadratic dependence on m by prun-
ing elements of Ri that are unlikely to be chosen as the
canonical record. We propose the following method to prune
records for the feature-based canonicalizers:

• Build a feature-based canonicalizer C′ that only uses
text features, not edit-distance features. Thus, this
canonicalizer does not require the m2 computation to
compute edit-distance.

• Score each element of R using C′.

• Remove all Ri with scores less than threshold δ.

• Run the original canonicalizer using edit-distance fea-
tures.

This method therefore prunes records from consideration
prior to computing the edit-distance. We leave empirical
evaluation of this approximation for future work.
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Figure 4: Noise experiments for expanded dataset.
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Figure 5: Noise experiments for acronym dataset.

7. CONCLUSION AND FUTURE WORK
Record canonicalization is an important and under-studied

problem in databases populated with heterogeneous, imper-
fect data. In this paper, we have formalized the canoni-
calization problem and proposed three broad classes of so-
lutions. We have implemented three instantiations of one
solution class and empirically evaluated them on manually
annotated data. These experiments show that it is possible
to build a system to accurately learn canonicalization prefer-
ences with only a few examples. Furthermore, this approach
appears to be quite robust to the types of noise common in
automatically extracted records.

In future research, we plan to explore record merging
and record generation approaches to canonicalization. We
also plan to explore the interaction of canonicalization with
deduplication. These two tasks are inter-related, and it is
likely that performing joint inference across them can im-
prove performance.
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