
CMPSCI 585
Programming Assignment 1

Out: February 5, 2003

Due: February 17, 2003

Spam Filtering using Naive Bayes

Naive Bayes is a simple, effective machine learning solution to the problem
of document classification. For this assignment, you will implement a naive
Bayes classifier to classify email messages as either spam (junk mail) or
ham (legitimate messages).

Data

The data was collected from http://spamassassin.org/publiccorpus/.
For this assignment, use the slightly modified version found at
http://canberra.cs.umass.edu/~culotta/cs585/ass1-data.tgz
(8.3M). The data consists of 4150 ham messages and 1897 spam messages,
with original header information intact.

Tasks

Read data: Read in all messages and store them in some efficient
manner. To do this you must decide how to tokenize each message – i.e.
designate which characters indicate the start of a new “word.” See
http://www.paulgrahm.com/spam.html for one way of doing this. (You
will probably also assign each unique word an integer index you can use as
an index into arrays of word counts and word proabilities.)
Split Data: Randomly split the messages into a training set (70% of the
messages) and a testing set (30%).
Train Classifier: Using the training set only, estimate and store the prior
class distributions P (spam) and P (ham), as well as the conditional
probability distributions P (w|spam) and P (w|ham).
Test Classifier: Classify each message in the testing set as spam or ham
according to the Naive Bayes formulation. Note that you will most likely
run out of floating-point resolution unless you do the product over words

1

Spam Ham
Spam TP FP
Ham FN TN

Table 1: Confusion Matrix: TP = “true positive”, TN = “true negative”,
FP = “false positive”, ‘FN = “false negative”.

in log-space, (i.e. as a sum of log-probabilities), then rescale before
exponentiating and normalizing.
Evaluate Classifier: Evaluate the accuracy of your classifier on both the
training data and the testing data using two methods: a confusion matrix
and a precision recall graph. A confusion matrix summarizes the types of
errors your classifier makes, as in Table 1.
Here, TP is the number of spam messages classified as spam, TN is the
number of ham messages classified as ham, FP is the number of ham
messages misclassified as spam, and FN is the number of spam messages
misclassified as ham.
A precision-recall graph plots the classifier’s precision at various points of
recall, where precision = TP / testingSetSize, and recall = TP / (TP +
FN). To construct a precision-recall graph, sort the predicted messages in
decreasing order of the posterior probability of the predicted class (i.e. in
decreasing order of confidence that the classification is correct). Next, split
the list into n bins (n = 10 is usually sufficient). For each bin, calculate
the precision and recall including only classifications in this bin or in bins
with higher posterior probabilities. Plot these n points on the graph.

Additional Experiments

Perform at least 2 of the following 5 experiments, using the same
evaluation techniques as in the spam experiment.
- Effects of train/test split: Split data into 50% training, 50% testing
(instead of 70-30). Consider trying even less training data. What happens
to training set accuracy? Why?
- Different word feature sets: Try some different word features and
investigate their accuracies. For example, try at least two of the following,
plus some additional variation you devise. (1) Parse each document to
extract the To, From, CC, and Subject fields, and use only the tokens
from these fields to represent each message, (2) Downcase all the words so
that case information is lost, (3) Remove MIME attachments, (4) Remove
HTML tags, (5) Remove words that occur less than 2 times.

2

- Alternate priors: Instead of using “plus one” smoothing, try numbers
different than one. Does performance degrade if you use numbers much
smaller than one? How about much larger than one? Is there some number
other than 1 that gives higher classification accuracy than “plus one”?
- Prune vocabulary size by information gain: Instead of using all the
words in the training data, use only the top 1000 words with the highest
information gain (mutual information with the class label). Try the top
10000, 100 words, top 10, and some others. Does the test set accuracy
change? Why do you think so?
- Create an automatic foldering tool: If you organize your Inbox into
folders, train and test a Naive Bayes classifier to classify your email based
on the folder they belong to. The only difference between this and the
spam experiment are the data and categories you use, and that you are
expected to classify into more than two categories. How does the accuracy
here compare with the spam data? Make some analysis of the differences.

What to turn in

Code: Print out all source code written for the project.
Report: Write a 2 page report that includes the following:

1. Implementation experience - What questions and issues arose during
your implementation. If there were difficulties, how did you resolve
them?

2. Tokenization method - How did you tokenize the input and why?

3. Experimental results - In addition to the confusion matrix and
precision-recall graphs for each experiment, also include the overall
accuracy for each.

4. Discussion - Discuss your experiments, explain your results. What
additional experiments do you think would improve your
performance?

Suggested timeline

• Thursday, February 5: Assignment given

• Tuesday, February 10: Implementation finished, baseline experiments
in progress.

3

• Thursday, February 12: Two or more additional experiments in
progress

• Tuesday, February 17: Report written, code printed, hand it in.

4

