
CS 585: Natural Language Processing

Fall 2004

Programming Assignment 1: A CKY Parser

Out: Thu, September 15, 2004
Due: Tue, September 28, 2004

The aim of this project is for you to gain experience writing a simple parser
from scratch. You may use any programming language for this task (we provide no
skeleton for you to build on). While the focus of this assignment is not on efficiency,
you program should have a O(n3) running time. You may assume grammars are
always given in Chomsky Normal Form.

1 Tasks

• Your program should take three filenames as arguments: the grammar, the
lexicon, and a list of sentences. The grammar and lexicon are specified in
separate files, one rule per line, in the following format:

S -> NP VP
NP -> NP PP
VP -> VP PP

N -> Homer
P -> to
DET -> the

The S symbol is always assumed to be the start symbol of the grammar. All
other symbol names may be arbitrary.

The input sentences will be provided one per line in a file:

The dog ate the homework
Peter relies on Mary for help with his homework

Download the sample grammar, lexicon, and sentences from

http://www.cs.umass.edu/~mccallum/courses/inlp2004//pa1-sample.tgz

1



Make sure your program outputs all possible parses for each sentence based on
the grammar. The output format of a parse should be similar to the labeled
bracketing given on page 98 of Manning & Schutze.

• Come up with a grammar/lexicon on your own to parse at least three ambigu-
ous sentences. Make sure to convert your grammar to Chomsky Normal Form
before giving it to the parser. A search for “ambiguous headlines” on Google
can be a good starting point.

• Extra credit. Make your parser support parsing general context-free gram-
mars (i.e., not restricted to CFGs in Chomsky Normal Form). You don’t have
to worry about ε production rules. Note that you have two choices here: (1)
Write code to convert the grammar to Chomsky Normal Form, then run your
CYK implementation, or (2) Implement the Early Parser.

Extra, extra credit. Choose option (1) above, and then print the output
parse in the original grammar, not the Chomsky Normal Form grammar.

2 What to turn in

• Code: Print out all source code written for the project, and your own gram-
mars and sentences along with the parser outputs on them.

• Program outputs: Print out your parser’s outputs for the sample sentences
we provided (based on the sample grammar) and for the ambiguous sentences
you used (based on your own grammar).

• Report: Write a report (roughly) that includes your implementation experi-
ence and details. For example: Describe some interesting issues and questions
that arose during your implementation. What kinds of bugs did you encounter
along the way. If there were difficulties, how did you resolve them? What data
structures did you use, and how did you decide which data structures to use?
What can you say about the speed of your parser? Did you make up and try
a lot of different grammars? Some more ambiguous than others? How does
the ambiguity and sentence length change the running time or space required?
What was your favorite part of the assignment? Any suggestions for future
years’ versions of this assignment?

2


