Probability

Lecture #4

Introduction to Natural Language Processing

CMPSCI 585, Fall 2004

University of Massachusetts Amherst

Andrew McCallum

Probability Theory

- Probability theory deals with predicting how likely it is that something will happen.
 - Toss 3 coins, how likely is it that all come up heads?
 - See phrase “more lies ahead”, how likely is it that “lies” is noun?
 - See “Nigerian minister of defense” in email, how likely is it that the email is spam?
 - See “Le chien est noir”, how likely is it that the correct translation is “The dog is black”?

Experiments and Sample Spaces

- **Experiment (or trial)**
 - Repeatable process by which observations are made
 - E.g. tossing 3 coins
- **Observe basic outcome from sample space, Ω**, (set of all possible basic outcomes), e.g.
 - One coin toss, sample space Ω = { H, T }
 - Three coin tosses, Ω = { HHH, HHT, HTH, THH, THT, TTH, TTT }
 - Part-of-speech of a word, Ω = { CC, CD, CT, …, WRB }
 - Lottery tickets, |Ω| = 10^7
 - Next word in Shakespeare play, |Ω| = size of vocabulary
 - Number of words in your Ph.D. thesis, Ω = { 0, 1, …, ∞ }
 - Length of time of “a” sounds when I said “sample”.

Events and Event Spaces

- An **event, A**, is a set of basic outcomes, i.e., a subset of the sample space, Ω.
 - Intuitively, a question you could ask about an outcome.
 - Ω = { HHH, HHT, HTH, HTT, THH, THT, TTH, TTT }
 - E.g. basic outcome = THH
 - E.g. event = “has exactly 2 H’s”, A={THH, HHT, HTH}
 - A=Ω is the certain event, A=∅ is the impossible event.
 - For “not A”, we write \overline{A}
- A common **event space, F**, is the power set of the sample space, Ω. (power set is written $2^Ω$)
 - Intuitively: all possible questions you could ask about a basic outcome.

Probability

- A **probability** is a number between 0 and 1.
 - 0 indicates impossibility
 - 1 indicates certainty
- A **probability function, P**, (or **probability distribution**) assigns probability mass to events in the event space, F.
 - P : F → [0,1]
 - P(Ω) = 1
 - Countable additivity: For disjoint events A_i in F $P(\bigcup A_i) = \sum P(A_i)$
- We call $P(A)$ “the probability of event A”, well-defined **probability space** consists of
 - Sample space Ω
 - Event space F
 - Probability function P

Probability (more intuitively)

- Repeat an **experiment** many, many times.
 (Let T = number of times.)
- Count the number of **basic outcomes** that are a member of event A.
 (Let C = this count.)
- The ratio C/T will approach (some unknown) but constant value.
- Call this constant “the probability of event A”; write it $P(A)$.

Why is the probability this ratio of counts? Stay tuned! Maximum likelihood estimation at end.
Example: Counting

- "A coin is tossed 3 times. What is the likelihood of 2 heads?"
 - Experiment: Toss a coin three times, \(\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \)
 - Event: basic outcome has exactly 2 H's
 \(A = \{THH, HTH, HHT\} \)
 - Run experiment 1000 times (3000 coin tosses)
 - Counted 373 outcomes with exactly 2 H's
 - Estimated \(P(A) = \frac{373}{1000} = 0.373 \)

Example: Uniform Distribution

- "A fair coin is tossed 3 times. What is the likelihood of 2 heads?"
 - Experiment: Toss a coin three times, \(\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \)
 - Event: basic outcome has exactly 2 H's
 \(A = \{THH, HTH, HHT\} \)
 - Assume a uniform distribution over outcomes
 - Each basic outcome is equally likely
 - \(P(\{HHH\}) = P(\{HHT\}) = \ldots = P(\{TTT\}) \)
 - \(P(A) = \frac{|A|}{|\Omega|} = \frac{3}{8} = 0.375 \)

Probability (again)

- A probability is a number between 0 and 1.
 - 0 indicates impossibility
 - 1 indicates certainty
- A probability function, \(P, \) (or probability distribution) distributes probability mass of 1 throughout the event space, \(F. \)
 - \(P : F \rightarrow [0,1] \)
 - Countable additivity: For disjoint events \(A_j \) in \(F \)
 \[P(\bigcup_j A_j) = \sum_j P(A_j) \]
- The above are axioms of probability theory
- Immediate consequences:
 - \(P(\emptyset) = 0, \ P(\Omega) = 1 \)
 - \(A \subseteq B \Rightarrow P(A) \leq P(B), \)
 - \(\sum_a P(a) = 1, \) for \(a = \) basic outcome.

Joint and Conditional Probability

- Joint probability of \(A \) and \(B: \)
 \[P(A \cap B) \text{ is usually written } P(A,B) \]
- Conditional probability of \(A \) given \(B: \)
 \[P(A|B) = \frac{P(A,B)}{P(B)} \]

Joint Probability Table

<table>
<thead>
<tr>
<th>Precipitation, Temperature</th>
<th>Sun</th>
<th>Rain</th>
<th>Sleet</th>
<th>Snow</th>
</tr>
</thead>
<tbody>
<tr>
<td>10s</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>20s</td>
<td>0.08</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>30s</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>40s</td>
<td>0.06</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>50s</td>
<td>0.06</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>60s</td>
<td>0.07</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>70s</td>
<td>0.07</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>80s</td>
<td>0.07</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>90s</td>
<td>0.08</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>100s</td>
<td>0.08</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Conditional Probability Table

<table>
<thead>
<tr>
<th>Precipitation, Temperature</th>
<th>Sun</th>
<th>Rain</th>
<th>Sleet</th>
<th>Snow</th>
</tr>
</thead>
<tbody>
<tr>
<td>10s</td>
<td>0.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>20s</td>
<td>0.8</td>
<td>0.3</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>30s</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>40s</td>
<td>0.6</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>50s</td>
<td>0.6</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>60s</td>
<td>0.7</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>70s</td>
<td>0.7</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>80s</td>
<td>0.7</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>90s</td>
<td>0.8</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>100s</td>
<td>0.8</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Two Useful Rules

- **Multiplication Rule**
 \[P(A, B) = P(A|B) \cdot P(B) \]
 (equivalent to conditional probability definition from previous slide)

- **Total Probability Rule (Sum Rule)**
 \[P(A) = P(A, B) + P(A, \overline{B}) \]
 or more generally, if \(B \) can take on \(n \) values
 \[P(A) = \sum_{i=1}^{n} P(A, B_i) \]
 (from additivity axiom)

Bayes Rule

- \(P(A, B) = P(B, A) \), since \(P(A \cap B) = P(B \cap A) \)
- Therefore \(P(A|B) \cdot P(B) = P(B|A) \cdot P(A) \), and thus
 \[P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} \]
- **Bayes Rule** lets you swap the order of the dependence between events...
- calculate \(P(A|B) \) in terms of \(P(B|A) \)

Reverend Thomas Bayes

- Rumored to have been tutored by De Moivre.
- Was elected a Fellow of the Royal Society in 1742 despite the fact that at that time he had no published works on mathematics!

Same year Mozart wrote his symphony #1 in E-flat.

Independence

- Can we compute \(P(A, B) \) from \(P(A) \) and \(P(B) \)?
- Recall: \(P(A, B) = P(A|B) \cdot P(B) \) (multiplication rule)
- We are almost there: How does \(P(B|A) \) relate to \(P(B) \)?
 \[P(B|A) = P(B) \] iff \(B \) and \(A \) are **independent**!
- Examples:
 - Two coin tosses
 - Color shirt I’m wearing today, what a Bill Clinton had for breakfast.
- Two events \(A, B \) are **independent** from each other if
 \[P(A, B) = P(A) \cdot P(B) \] (Equivalent to \(P(B) = P(B|A) \) if \(P(A) \neq 0 \))
 - Otherwise they are **dependent**.

Joint Probability with Independence

<table>
<thead>
<tr>
<th>Precipitation, Temperature</th>
<th>Precipitation</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>Rain</td>
<td>Sleet</td>
</tr>
<tr>
<td>10°</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>20°</td>
<td>0.08</td>
<td>0.00</td>
</tr>
<tr>
<td>30°</td>
<td>0.08</td>
<td>0.00</td>
</tr>
<tr>
<td>40°</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>50°</td>
<td>0.08</td>
<td>0.03</td>
</tr>
<tr>
<td>60°</td>
<td>0.08</td>
<td>0.03</td>
</tr>
<tr>
<td>70°</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>80°</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>90°</td>
<td>0.06</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Chain Rule

\[
P(A_1, A_2, A_3, A_4, \ldots A_n) = P(A_1 | A_2, A_3, A_4, \ldots A_n) \cdot P(A_2, A_3, A_4, \ldots A_n)\]

Analogous to \(P(A, B) = P(A|B) \cdot P(B) \).
Chain Rule

\[P(A_1, A_2, A_3, A_4, \ldots, A_n) = \frac{P(A_1|A_2, A_3, A_4, \ldots, A_n) \cdot P(A_2|A_3, A_4, \ldots, A_n) \cdot P(A_3|A_4, \ldots, A_n) \cdots P(A_n)}{P(A_1)} \]

Furthermore, if \(A_1, \ldots, A_n \) are all independent from each other:

\[P(A_1, A_2, A_3, A_4, \ldots, A_n) = P(A_1) \cdot P(A_2) \cdot P(A_3) \cdots P(A_n) \]

Example: Two ways, same answer

- "A fair coin is tossed 3 times. What is the likelihood of 3 heads?"
 - Experiment: Toss a coin three times, \(\Omega = \{\text{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}\} \)
 - Event: basic outcome has exactly 3 H's
 \(A = \{\text{HHH}\} \)
 - Chain rule
 \[P(\text{HHH}) = P(H) \cdot P(H|H) \cdot P(H|HH) = P(H) \cdot P(H) \cdot P(H) = (0.5)^3 = \frac{1}{8} \]
 - Size of event spaces
 \[P(\text{HHH}) = \frac{|A|}{|\Omega|} = \frac{1}{8} \]

Finding most likely posterior event

- \(P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} \) (for example, P("lies"|Noun)="more lies ahead")

- Want to find most likely \(A \) given \(B \), but \(P(B) \) is sometimes a pain to calculate...

- \(\arg \max_A P(B|A)P(A) = \arg \max_A \frac{P(B|A)P(A)}{P(B)} \) because \(B \) is constant while changing \(A \)

Random Variables

- A random variable is a function \(X : W \rightarrow Q \)

- in general \(Q = \mathbb{R}^n \), but more generally simply \(Q = \mathbb{R} \)

- makes it easier to talk about numerical values related to event space

- Random variable is discrete if \(Q \) is countable.

- Example: coin \(Q = \{0,1\} \), die \(Q = \{1,2,3,4,5,6\} \)

- Called an indicator variable or Bernoulli trial if \(Q \subset \{0,1\} \)

- Example:

 - Suppose event space comes from tossing two dice.

 - We can define a random variable \(X \) that is the sum of their faces

 - \(X : W \rightarrow \{2,3,4,5,6,7,8,9,10,11,12\} \)

Because a random variable has a numeric range, we can often do math more easily by working with values of the random variable than directly with events.
Probability Mass Function
- \(p(X=x) = P(A_x) \) where \(A_x = \{ a \in W : X(a) = x \} \)
- Often written just \(p(x) \), when \(X \) is clear from context.
- In English:
 - Probability mass function, \(p \)...
 - maps some value \(x \) (of random variable \(X \)) to...
 - the probability random variable \(X \) taking value \(x \)
 - equal to the probability of the event \(A_x \)
 - this event is the set of all basic outcomes, \(a \), for which the random variable \(X(a) \) is equal to \(x \).
- Example, again:
 - Event space = roll of two dice; e.g. \(a = \langle 2,5 \rangle \), \(|W| = 36 \)
 - Random variable \(X \) is the sum of the two faces
 - \(p(X=4) = P(A_4) \), \(A_4 = \{ \langle 1,3 \rangle, \langle 2,2 \rangle, \langle 3,1 \rangle \} \), \(P(A_4) = 3/36 \)

Random variables will be used throughout the Introduction to Information Theory, coming next class.

Expected Value
- \(\ldots \) is a weighted average, or mean, of a random variable \(E[X] = \sum_{x \in X(W)} x \cdot p(x) \)
- Example:
 - \(X = \) value of one roll of a fair six-sided die: \(E[X] = (1+2+3+4+5+6)/6 = 3.5 \)
 - \(X = \) sum of two rolls...
 - \(E[X] = 7 \)
- If \(Y \sim p(Y=y) \) is a random variable, then any function \(g(Y) \) defines a new random variable, with expected value \(E[g(Y)] = \sum_{y \in Y(W)} g(y) \cdot p(y) \)
- For example,
 - let \(g(Y) = aY + b \), then \(E[g(Y)] = a E[Y] + b \)
 - \(E[X+Y] = E[X] + E[Y] \)
 - if \(X \) and \(Y \) are independent, \(E[XY] = E[X] E[Y] \)

Variance
- Variance, written \(s^2 \)
- Measures how consistent the value is over multiple trials
 - “How much on average the variable’s value differs from its mean.”
- \(\text{Var}[X] = E[(X-E[X])^2] \)
- Standard deviation = \(\sqrt{\text{Var}[X]} = s \)

Joint and Conditional Probabilities
- Joint and Conditional Probability Rules
 - Analogous to probability of events!
 - Joint probability \(p(x,y) = P(X=x, Y=y) \)
 - Marginal distribution \(p(x) \) obtained from the joint \(p(x,y) \)
 \(p(x) = \sum_y p(x,y) \) (by the total probability rule)
 - Bayes Rule
 \(p(x|y) = p(y|x) p(x) / p(y) \)
 - Chain Rule
 \(p(w,x,y,z) = p(z) p(y|z) p(x|y,z) p(w|x,y,z) \)

Parameterized Distributions
- Common probability mass functions with same mathematical form...
 - \(\ldots \) just with different constants employed.
 - A family of functions, called a distribution.
 - Different numbers that result in different members of the distribution, called parameters.
 - \(p(a;b) \)

Binomial Distribution
- A discrete distribution with two outcomes \(W = \{0, 1\} \) (hence bi-nomial)
- Make \(n \) experiments.
 - “Toss a coin \(n \) times.”
- Interested in the probability that \(r \) of the \(n \) experiments yield 1.
- Careful! It’s not a uniform distribution.
 - \(p(R=r|n,q) = \binom{n}{r} \cdot q^r \cdot (1-q)^{n-r} \)
 - where \(\binom{n}{r} = \frac{n!}{r! \cdot (n-r)!} \)
Pictures of Binomial Distribution

Multinomial Distribution

- A discrete distribution with \(m \) outcomes
 \(W = \{0, 1, 2, \ldots, m\} \)
- Make \(n \) experiments.
- Examples: “Roll a \(m \)-sided die \(n \) times.”
 “Assuming each word is independent from the next, generate an \(n \)-word sentence from a vocabulary of size \(m \).”
- Interested in the probability of obtaining counts \(c_1, c_2, \ldots, c_m \) from the \(n \) experiments.

\[
\Pr(c | n, q) = \frac{n!}{c_1! c_2! \ldots c_m!} \prod_{i=1}^{m} (q_i)^{c_i}
\]

Parameter Estimation

- We have been assuming that \(P \) is given, but most of the time it is unknown.
- So we assume a parametric family of distributions and estimate its parameters…
- …by finding parameter values most likely to have generated the observed data (evidence).
- …treating the parameter value as a random variable!
 Not the only way of doing parameter estimation.
 This is maximum likelihood parameter estimation.

Maximum Likelihood Parameter Estimation

Example: Binomial

- Toss a coin 100 times, observe \(r \) heads
- Assume a binomial distribution
 – Order doesn’t matter, successive flips are independent
 – One parameter is \(q \) (probability of flipping a head)
 – Binomial gives \(p(r | n, q) \). We know \(r \) and \(n \).
 – Find \(\arg \max_q p(r | n, q) \)

\[
\text{likelihood} = p(R = r | n, q) = \frac{n!}{r! (n-r)!} q^r (1-q)^{n-r}
\]

\[
\log \text{likelihood} = \log(p(r | n, q)) = \log(n! | r! (n-r)! q^r (1-q)^{n-r}) = \log(n!) + r \log(q) + (n-r) \log(1-q)
\]

Our familiar ratio-of-counts is the maximum likelihood estimate!

Binomial Parameter Estimation Examples

- Make 1000 coin flips, observe 300 Heads
 \(\hat{p} = 300/1000 \)
- Make 3 coin flips, observe 2 Heads
 \(\hat{p} = 2/3 \)
- Make 1 coin flips, observe 1 Tail
 \(\hat{p} = 0 \)
- Make 0 coin flips
 \(\hat{p} = ??? \)

We have some “prior” belief about \(P(\text{Heads}) \) before we see any data.
After seeing some data, we have a “posterior” belief.
Bayesian Parameter Estimation

- We’ve been finding the parameters that maximize
 \(p(\text{data}|\text{parameters}) \),
 not the parameters that maximize
 \(p(\text{parameters}|\text{data}) \) (parameters are random variables!)

- \(p(q|r,n) = p(r|n,q) p(q|n) \)
 \(p(r|n) \) constant

- \(p(q) = 6q(1-q) \)

Bayesian Decision Theory

- We can use such techniques for choosing among models:
 – Which among several models best explains the data?

- Likelihood Ratio
 \[
 \frac{P(\text{model1} | \text{data})}{P(\text{model2} | \text{data})} = \frac{P(\text{data}|\text{model1}) P(\text{model1})}{P(\text{data}|\text{model2}) P(\text{model2})}
 \]

Maximum A Posteriori Parameter Estimation Example: Binomial

posterior = \(p(r|n,q)p(q) \)

\[
\log - \text{posterior} = L = \log(q)^{n-r} (1-q)^{r} = (r + 1) \log(q) + (n - r + 1) \log(1 - q)
\]

Bayesian Parameter Estimation

A Probabilistic Approach to Classification: “Naïve Bayes”

Pick the most probable class, given the evidence:

\[
c^* = \arg \max_{c} P(c_j | d)
\]

Bayes Rule:

\[
P(c_j | d) = \frac{P(c_j) P(d | c_j)}{P(d)} = \frac{P(c_j) \prod_{i=1}^{m} P(w_{ij} | c_j)}{\sum_{c_i} P(c_i) \prod_{i=1}^{m} P(w_{ij} | c_i)}
\]

\(w_{ij} \) is the \(j \)th word in \(d \) (like “proof”)

Document Classification by Machine Learning

“Temporal reasoning for planning has long been studied formally. We discuss the semantics of several planning...”

Training data:

Testing Document:

Categories:

“Planning with temporal reasoning has been...”
“Garbage collection for strongly-typed languages...”
“Multimedia streaming video for...”
“User studies of GUI...”