
Lecture 2: Context Free Grammars

Introduction to Natural Language Processing
CS 585

Fall 2004
Andrew McCallum

Also includes material from Chris Manning.

September 14, 2004

Today’s Main Points

• Demo of “hands on” with text, using Unix tools
Ziph’s Law

• A brief introduction to syntax in NLP.

• Define context free grammars.
Give some examples.

• Chomsky normal form. Converting to it.

• Parsing as search
Top-down, bottom up, and the problems with each.

• Hand out homework #1.

• Read M&S Ch 3, if you haven’t already.

Administration

• I will be giving research presentations in D.C. next Tuesday & Thursday.

• Tuesday: Wei Li with review of probability

• Thursday: Aron Culotta: information theory and naive Bayes.

• Be sure to subscribe to cs585 mailing list, if you haven’t already.
I sent a test message Sunday night.

“Hands on” with Text

• Get a large body of electronic text (called a corpus).

• Browse it.

• Use perl and other Unix tools to look at counts of words.
What does this distribution look like?

Messy, but the following works:

cat * | perl -pe ’s/[^a-zA-Z]/\n/g’ | egrep ’.’ \
| awk ’{print tolower($0)}’ \
| sort | uniq -c | sort -nr | less

cat sawyr10.txt | perl -pe ’s/[^a-zA-Z]/\n/g’ | egrep ’.’ \
| awk ’{print tolower($0)}’ \
| sort | uniq -c | sort -nr | \
perl -pe ’s/[^0-9\n]//g’ | uniq -c | less

Word frequencies in Tom Sawyer

Word Freq Use
the 3332 determiner (article)
and 2972 conjunction
a 1775 determiner
to 1725 preposition, verbal infinitive marker
of 1440 preposition
was 1161 auxiliary verb
it 1027 (personal/expletive) pronoun
in 906 preposition
that 877 complementizer, demonstrative
he 877 (personal) pronoun
I 783 (personal) pronoun
his 772 (possessive) pronoun
you 686 (personal) pronoun
Tom 679 proper noun
with 642 preposition

Frequencies of frequencies in Tom Sawyer

Word Frequency Frequency of Frequency
1 3993
2 1292
3 664
4 410
5 243
6 199
7 172
8 131
9 82
10 91
11-50 540
51-100 99
>100 102

71,730 word tokens

8,018 word types

Ziph’s Law in Tom Sawyer

Word Freq. (f) Rank (r) f * r
the 3332 1 3332
and 2972 2 5944
a 1775 3 5235
he 877 10 8770
but 710 20 8400
be 294 30 8820
there 222 40 8880
one 172 50 8600
about 158 60 9480
more 138 70 9480
never 124 80 9920
Oh 116 90 10440
two 104 100 10400

Ziph’s Law in Tom Sawyer

Word Freq. (f) Rank (r) f * r
turned 51 200 10200
youll 30 300 9000
name 21 400 8400
comes 16 500 8000
group 13 600 7800
lead 11 700 7700
friends 10 800 8000
begin 9 900 8100
family 8 1000 8000
brushed 4 2000 8000
sins 2 3000 6000
Could 2 4000 8000
Applausive 1 8000 8000

Ziph’s Law

frequency ∝ 1
rank

In other words, there is a constant, k, such that f · r = k.

Language structure and meaning

We want to know how meaning is mapped onto what language structures.
Commonly in English in ways like this:

[Thing The dog] is [Place in the garden]

[Thing The dog] is [Property fierce]

[Action [Thing The dog] is chasing [Thing the cat]]

[State [Thing The dog] was sitting [Place in the garden] [Time
yesterday]]

[Action [Thing We] ran [Path out into the water]]

[Action [Thing The dog] barked [Property/Manner loudly]]

[Action [Thing The dog] barked [Property/Amount nonstop for five
hours]]

Word categories: Traditional parts of speech

Noun Names of things boy, cat, truth
Verb Action or state become, hit
Pronoun Used for noun I, you, we
Adverb Modifies V, Adj, Adv sadly, very
Adjective Modifies noun happy, clever
Conjunction Joins things and, but, while
Preposition Relation of N to, from, into
Interjection An outcry ouch, oh, alas, psst

Part of speech “Substitution Test”

The {sad, intelligent, green, fat, ...} one is in the corner.

Constituency

The idea: Groups of words may behave as a single unit or phrase, called a
consituent.

E.g. Noun Phrase

Kermit the frog
they
December twenty-sixth
the reason he is running for president

Constituency

Sentences have parts, some of which appear to have subparts. These
groupings of words that go together we will call constituents.

(How do we know they go together? Coming in a few slides...)

I hit the man with a cleaver
I hit [the man with a cleaver]
I hit [the man] with a cleaver

You could not go to her party
You [could not] go to her party
You could [not go] to her party

Constituent Phrases
For constituents, we usually name them as phrases based on the word that
heads the constituent:

the man from Amherst is a Noun Phrase (NP) because the head man is a noun

extremely clever is an Adjective Phrase (AP) because the head clever is an adjective

down the river is a Prepositional Phrase (PP) because the head down is a preposition

killed the rabbit is a Verb Phrase (VP) because the head killed is a verb

Note that a word is a constituent (a little one). Sometimes words also act
as phrases. In:

Joe grew potatoes.
Joe and potatoes are both nouns and noun phrases.

Compare with:

The man from Amherst grew beautiful russet potatoes.

We say Joe counts as a noun phrase because it appears in a place that a
larger noun phrase could have been.

Evidence constituency exists

1. They appear in similar environments (before a verb)
Kermit the frog comes on stage
They come to Massachusetts every summer
December twenty-sixth comes after Christmas
The reason he is running for president comes out only now.
But not each individual word in the consituent
*The comes our... *is comes out... *for comes out...

2. The constituent can be placed in a number of different locations
Consituent = Prepositional phrase: On December twenty-sixth
On December twenty-sixth I’d like to fly to Florida.
I’d like to fly on December twenty-sixth to Florida.
I’d like to fly to Florida on December twenty-sixth.
But not split apart
*On December I’d like to fly twenty-sixth to Florida.
*On I’d like to fly December twenty-sixth to Florida.

Context-free grammar

The most common way of modeling constituency.

CFG = Context-Free Grammar = Phrase Structure Grammar
= BNF = Backus-Naur Form

The idea of basing a grammar on constituent structure dates back to
Wilhem Wundt (1890), but not formalized until Chomsky (1956), and,
independently, by Backus (1959).

Context-free grammar

G = 〈T,N, S,R〉

• T is set of terminals (lexicon)

• N is set of non-terminals For NLP, we usually distinguish out a set
P ⊂ N of preterminals which always rewrite as terminals.

• S is start symbol (one of the nonterminals)

• R is rules/productions of the form X → γ, where X is a nonterminal
and γ is a sequence of terminals and nonterminals (may be empty).

• A grammar G generates a language L.

An example context-free grammar

G = 〈T,N, S,R〉

T = {that, this, a, the, man, book, flight, meal, include, read, does}

N = {S, NP, NOM, VP, Det, Noun, Verb, Aux}

S = S

R = {

S → NP VP Det → that | this | a | the
S → Aux NP VP Noun → book | flight | meal | man
S → VP Verb → book | include | read
NP → Det NOM Aux → does
NOM → Noun
NOM → Noun NOM
VP → Verb
VP → Verb NP

}

Application of grammar rewrite rules

S → NP VP Det → that | this | a | the

S → Aux NP VP Noun → book | flight | meal | man

S → VP Verb → book | include | read

NP → Det NOM Aux → does

NOM → Noun

NOM → Noun NOM

VP → Verb

VP → Verb NP

S → NP VP
→ Det NOM VP
→ The NOM VP
→ The Noun VP
→ The man VP
→ The man Verb NP
→ The man read NP
→ The man read Det NOM
→ The man read this NOM
→ The man read this Noun
→ The man read this book

Parse tree

S

���
���

��

HH
HHH

HHH

NP
����

HHHH

Det

The

NOM

Noun

man

VP

��
���

HH
HHH

Verb

read

NP
����

HHHH

Det

this

NOM

Noun

book

CFGs can capture recursion

Example of seemingly endless recursion of embedded prepositional phrases:
PP → Prep NP
NP → Noun PP

[S The shepherds ate their [NP lunch [PP of potatoes [PP from the fields
[PP of the farm [PP by the bend [PP in the river]]]]]]].

(Bracket notation)

Grammaticality

A CFG defines a formal language = the set of all sentences (strings of
words) that can be derived by the grammar.

Sentences in this set said to be grammatical.

Sentences outside this set said to be ungrammatical.

The Chomsky hierarchy

• Type 0 Languages / Grammars
Rewrite rules α → β
where α and β are any string of terminals and nonterminals

• Context-sensitive Languages / Grammars
Rewrite rules αXβ → αγβ
where X is a non-terminal, and α, β, γ are any string of terminals and
nonterminals, (γ must be non-empty).

• Context-free Languages / Grammars
Rewrite rules X → γ
where X is a nonterminal and γ is any string of terminals and
nonterminals

• Regular Languages / Grammars
Rewrite rules X → αY
where X, Y are single nonterminals, and α is a string of terminals; Y
might be missing.

Parsing regular grammars

(Languages that can be generated by finite-state automata.)
Finite state automaton ↔ regular expression ↔ regular grammar

Space needed to parse: constant

Time needed to parse: linear (in the length of the input string)

Cannot do embedded recursion, e.g. anbn. (Context-free grammars can.)
ab, aaabbb, *aabbb

The cat likes tuna fish.
The cat the dog chased likes tuna fish
The cat the dog the boy loves chased likes tuna fish.

John, always early to rise, even after a sleepless night filled with the cries
of the neighbor’s baby, goes running every morning.

John and Mary, always early to rise, even after a sleepless night filled with
the cries of the neighbor’s baby, go running every morning.

Parsing context-free grammars

(Languages that can be generated by pushdown automata.)

Widely used for surface syntax description (correct word order specification)
in natural languages.

Space needed to parse: stack (sometimes a stack of stacks)
In general, proportional to the number of levels of recursion in the data.

Time needed to parse: in general O(n3).

Can to anbn, but cannot do anbncn.

Chomsky Normal Form

All rules of the form X → Y Z or X → a.
Any CFG can be converted into this form.

How would you convert the rule W → XY aZ to Chomsky Normal Form?

Parsing context-sensitive grammars

(Languages that can be recognized by a non-deterministic Turing machine
whose tape is bounded by a constant times the length of the input.)

Natural languages are really not context-free: e.g. pronouns more likely in
Object rather than Subject of a sentence.

But parsing is PSPACE-complete! (Recognized by a Turing machine using
a polynomial amount of memory, and unlimited time.)

Often work with mildly context-sensitive grammars. More on this next
week. E.g. Tree-adjoining grammars. Time needed to parse, e.g. O(n6) or
O(n5)...

Bottom-up versus Top-down science

• empiricist
Britain: Francis Bacon, John Locke
Knowledge is induced and reasoning proceeds based on data from the
real world.

• rationalist
Continental Europe: Descartes
Learning and reasoning is guided by prior knowledge and innate ideas.

What is parsing?

We want to run the grammar backwards to find the structure.

Parsing can be viewed as a search problem.

We search through the legal rewritings of the grammar.
We want to find all structures matching an input string of words (for the
moment)

We can do this bottom-up or top-down
This distinction is independent of depth-first versus breadth-first; we can do
either both ways.
Doing this we build a search tree which is different from the parse tree.

Recognizers and parsers

• A recognizer is a program for which a given grammar and a given
sentence returns YES if the sentence is accepted by the grammar (i.e.,
the sentence is in the language), and NO otherwise.

• A parser in addition to doing the work of a recognizer also returns the
set of parse trees for the string.

Soundness and completeness

• A parser is sound if every parse it returns is valid/correct.

• A parser terminates if it is guaranteed not to go off into an infinite loop.

• A parser is complete if for any given grammar and sentence it is sound,
produces every valid parse for that sentence, and terminates.

• (For many cases, we settle for sound but incomplete parsers: e.g.
probabilistic parsers that return a k-best list.)

Top-down parsing

Top-down parsing is goal-directed.

• A top-down parser starts with a list of constituents to be built.
• It rewrites the goals in the goal list by matching one against the LHS of

the grammar rules,
• and expanding it with the RHS,
• ...attempting to match the sentence to be derived.

If a goal can be rewritten in several ways, then there is a choice of which
rule to apply (search problem)

Can use depth-first or breadth-first search, and goal ordering.

Top-down parsing example (Breadth-first)

S → NP VP Det → that | this | a | the

S → Aux NP VP Noun → book | flight | meal | man

S → VP Verb → book | include | read

NP → Det NOM Aux → does

NOM → Noun

NOM → Noun NOM

VP → Verb

VP → Verb NP

Book that flight.

(Work out top-down, breadth-first search on the board...)

Top-down parsing example (Breadth-first)

S

S
�� HH

NP VP

S

���
��

HHH
HH

Aux NP VP

S

VP

S

�
���

H
HHH

NP

��� HHH

Det NOM

VP

Verb

S

��
���

HH
HHH

NP

��� HHH

Det NOM

VP

�
��

H
HH

Verb NP

... S

VP

Verb

S

VP

�
��

H
HH

Verb VP

... S

VP

����

HHHH

Verb

book

NP

�
��

H
HH

Det

that

NOM

Noun

flight

Problems with top-down parsing

• Left recursive rules... e.g. NP → NP PP... lead to infinite recursion

• Will do badly if there are many different rules for the same LHS. Consider
if there are 600 rules for S, 599 of which start with NP, but one of which
starts with a V, and the sentence starts with a V.

• Useless work: expands things that are possible top-down but not there
(no bottom-up evidence for them).

• Top-down parsers do well if there is useful grammar-driven control: search
is directed by the grammar.

• Top-down is hopeless for rewriting parts of speech (preterminals) with
words (terminals). In practice that is always done bottom-up as lexical
lookup.

• Repeated work: anywhere there is common substructure.

Bottom-up parsing

Top-down parsing is data-directed.

• The initial goal list of a bottom-up parser is the string to be parsed.
• If a sequence in the goal list matches the RHS of a rule, then this

sequence may be replaced by the LHS of the rule.
• Parsing is finished when the goal list contains just the start symbol.

If the RHS of several rules match the goal list, then there is a choice of
which rule to apply (search problem)

Can use depth-first or breadth-first search, and goal ordering.

The standard presentation is as shift-reduce parsing.

Bottom-up parsing example

S → NP VP Det → that | this | a | the

S → Aux NP VP Noun → book | flight | meal | man

S → VP Verb → book | include | read

NP → Det NOM Aux → does

NOM → Noun

NOM → Noun NOM

VP → Verb

VP → Verb NP

Book that flight.

(Work out bottom-up search on the board...)

Shift-reduce parsing

Stack Input remaining Action
() Book that flight shift
(Book) that flight reduce, Verb → book, (Choice #1 of 2)
(Verb) that flight shift
(Verb that) flight reduce, Det → that
(Verb Det) flight shift
(Verb Det flight) reduce, Noun → flight
(Verb Det Noun) reduce, NOM → Noun
(Verb Det NOM) reduce, NP → Det NOM
(Verb NP) reduce, VP → Verb NP
(Verb) reduce, S → V
(S) SUCCESS!

Ambiguity may lead to the need for backtracking.

Shift Reduce Parser

Start with the sentence to be parsed in an input buffer.

• a ”shift” action correponds to pushing the next input symbol from the
buffer onto the stack

• a ”reduce” action occurrs when we have a rule’s RHS on top of the
stack. To perform the reduction, we pop the rule’s RHS off the stack
and replace it with the terminal on the LHS of the corresponding rule.

If you end up with only the Start symbol on the stack, then success!
If you don’t, and you cannot and no ”shift” or ”reduce” actions are possible,
backtrack.

Shift Reduce Parser

In a top-down parser, the main decision was which production rule to pick.
In a bottom-up shift-reduce parser there are two decisions:

1. Should we shift another symbol, or reduce by some rule?

2. If reduce, then reduce by which rule?

both of which can lead to the need to backtrack

Problems with bottom-up parsing

• Unable to deal with empty categories: termination problem, unless
rewriting empties as constituents is somehow restricted (but then it’s
generally incomplete)

• Useless work: locally possible, but globally impossible.

• Inefficient when there is great lexical ambiguity (grammar-driven control
might help here). Conversely, it is data-directed: it attempts to parse
the words that are there.

• Repeated work: anywhere there is common substructure.

• Both Top-down (LL) and Bottom-up (LR) parsers can (and frequently
do) do work exponential in the sentence length on NLP problems.

Principles for success

• Left recursive structures must be found, not predicted.

• Empty categories must be predicted, not found.

• Don’t waste effort re-working what was previously parsed before
backtracking.

An alternative way to fix things:

• Grammar transformations can fix both left-recursion and epsilon
productions.

• Then you parse the same language but with different trees.

• BUT linguists tend to hate you, because the structure of the re-written
grammar isn’t what they wanted.

Coming next...

A dynamic programming solution for parsing: CYK and Earley’s Algorithm.

(Then later in the semester.)
Probabilistic version of these models. Find the most likely parse when
several are possible.

