Probabilistic Parsing

in Practice
Lecture #15

Introduction to Natural Language Processing
CMPSCI 585, Fall 2004

Andrew McCallum

(including slides from Michael Collins, Chris Manning, Jason Eisner, Mary Harper)

ke McCaban, Unkass

Today’s Main Points

e Training data
e How to evaluate parsers

e Limitations of PCFGs, enhancements &

alternatives

Lexicalized PCFGs

Structure sensitivity

Left-corner parsing
- Faster parsing with beam search
- Dependency parsers

e Current state of the art

Treebanks: labeling data

ke McCaben, Unkass

*

*

Treebanks

® Penn Treebank
o Trees are represented via bracketing

e Fairly flat structures for Noun Phrases
(NP Arizona real estate loans)

e Tagged with grammatical and semantic functions
(-SBJ, -LOC, ...)

e Use empty nodes(*) to indicate understood subjects and
extraction gaps

o NP-over-NP structure
e Wrong based on linguistic theory
o Based on chunk(Abney 1991) view

Treebanks

Pure Grammar Induction Approaches tend not to
produce the parse trees that people want

Solution
@ Give a some example of parse trees that we want
@ Make a learning tool learn a grammar

Treebank
@ Acollection of such example parses
@ PennTreebank is most widely used

((S (NP-SBJ The move)
(VP followed
(NP (NP around)
(PP of

(NP (NP similar increases)
(PP by
(NP other lenders))
(PP against
(NP Arizona real estate loans)))))
(S-ADV (NP-SBJ *)
(VP reflecting
(NP a continuing decline)
(PP-LOC in
(NP that market))))))

NP
—_—
NP(basc) PP
I

—_—
similar increases by other lenders

N”(NP)
—_—
ADJP N
I
similar N PP

I —_—
increases by other lenders

Notion of Chunks(Penn Treebank Style) vs. Modern Syntax Theory

Treebanks

o Many people have argued that it is better to have
linguists constructing treebanks than grammars
[]

e Because it is easier
— to work out the correct parse of sentences

o than

— to try to determine what all possible manifestations of a
certain rule or grammatical construct are

Treebanking Issues

e Type of data
- Task dependent (newspaper, journals,
novels, technical manuals, dialogs, email)
e Size
= The more the better! (Resource-limited)
e Parse representation
- Dependency vs Parse tree
= Attributes. What do encode? words,
morphology, syntax, semantics...
- Reference & bookkeeping: date time, who
did what

ke McCaben, Unkass

Organizational Issues

e Team

- 1 Team leader; bookkeeping/hiring

1 Guideline person

1 Linguistic issues person

3-5 Annotators

1-2 Technical staff/programming

2 Checking persons
e Double annotation if possible.

ke McCaban, Unkass

Treebanking Plan

e The main points (after getting funding)
Planning

Basic guidelines development

Annotation & guidelines refinement

= Consistency checking, guidelines finalization
Packaging and distribution

e Time needed
= on the order of 2 years per 1 million words
= only about 1/3 of the total effort is annotation

ke McCaben, Unkass

Parser Evaluation

ke McCaben, Unkass

Evaluation

Ultimate goal is to build system for IE, QA, MT

People are rarely interested in syntactic analysis for its own
sake

Evaluate the system for evaluate the parser

For Simplicity and modularization, and Convenience

Compare parses from a parser with the result of hand
parsing of a sentence(gold standard)

What is objective criterion that we are trying to
maximize?

Evaluation

(Labeled) Precision

How many brackets in the parse match those in the correct
tree (Gold standard)?

(Labeled) Recall

How many of the brackets in the correct tree are in the
parse?

Crossing brackets

Average of how many constituents in one tree cross over
constituent boundaries in the other tree

Bl ()
B2 ()
B3 ()
B4 ()
wl w2 w3 w4 w5 w6 w7 w8

Evaluation

Tree Accuracy (Exact match)
It is a very tough standard!!!
But in many ways it is a sensible one to use

PARSEVAL Measures
For some purposes, partially correct parses can be useful
Originally for non-statistical parsers
Evaluate the component pieces of a parse
Measures : Precision, Recall, Crossing brackets

Problems with PARSEVAL (2)

Behind story
The structure of Penn Treebank
Flat = Few brackets — Low Crossing brackets
Troublesome brackets are avoided
— High Precision/Recall

The errors in precision and recall are minimal

In some cases wrong PP attachment penalizes Precision,
Recall and Crossing Bracket Accuracy minimally.

On the other hand, attaching low instead of high, then every
node in the right-branching tree will be wrong: serious harm
to Precision, Recall, and Crossing Bracket Accuracy.

Problems with PARSEVAL
Even vanilla PCFG performs quite well
It measures success at the level of individual decisions

You must make many consecutive decisions correctly to be
corrrect on the entire tree.

@ ROOT
s
N w W
NS MRS vD v NN "
o Sales executivesz were VEG NP PP yesterday 10
Jexamining DT NNS N NP
Jthe s figures g with 1 NN

7 great g care o
(b) ROOT
B

NNS NNS VED

o Sales | executives; were VEG NP

+ examining NP PP

DT NNS I NP
' e
athe s figures g with NN NN NN

7 great s care g yesterday 1o

(@) Brackets in gold standard tree (a.): _
S40:11), NP<0:2), VPZ:9), {P-3:9)) NP-4:6), Pp-(s-q&: NP-(7,9), “NP(9:10)
(@ Brackets in candidate pArse (b.: =%
$40:11), NP-0:2), VP-(2:10), VP-(3:10), NP-(4:10), NP<4:6), PP-(6-10), NP-7.10)
%

(e) Precision: 3/8- Crossing Brackets: 37
Recall: 3/8=37.5% Crossing Accuracy 62%
Labeled Precision: 3/8=37.5% Tagging Accuracy: 10/11 = 90.9%

Labeled Recall: 3/8=37.5%

Evaluation

Do PARSEVAL measures succeed in real tasks?
Many small parsing mistakes might not affect tasks of
semantic interpretation

(Bonnema 1996,1997)
Tree Accuracy of the Parser : 62%
Correct Semantic Interpretations : 88%
(Hermajakob and Mooney 1997)
English to German translation

At the moment, people feel PARSEVAL measures are
adequate for the comparing parsers

Lexicalized Parsing

Limitations of PCFGs

o PCFGs assume:
= Place invariance
= Context free: P(rule) independent of
e words outside span
e also, words with overlapping derivation
= Ancestor free: P(rule) independent of
e Non-terminals above.
°

e Lack of sensitivity to lexical information

o | ack of sensitivity to structural frequencies

ke McCaben, Unkass

Lack of Lexical Dependency

Means that
P(VP — V NP NP)

is independent of the particular verb
involved!

... but much more likely with ditransitive
verbs (like gave).

He gave the boy a ball.
He ran to the store.

ke McCaban, Unkass

The Need for Lexical Dependency

Probabilities dependent on Lexical words

Problem 1 : Verb subcategorization
VP expansion is independent of the choice of verb

However ...
verb
come take think want
VP>V 9.5% 2.6% 46%| 5.7%
VP ->V NP 11%| 32.1% 0.2% | 13.9%
VP >V PP 34.5% 3.1% 71% 0.3%
VP ->V SBAR 6.6% 0.3%| 73.0%| 0.2%
VP->VS 2.2% 1.3% 4.8%| 70.8%

Including actual words information when making decisions
about tree structure is necessary

Weakening the independence
assumption of PCFG

Probabilities dependent on Lexical words

Problem 2 : Phrasal Attachment
Lexical content of phrases provide information for decision
Syntactic category of the phrases provide very little
information
Standard PCFG is worse than n-gram models

S
—_—
NP VP o= =
| -

Moscow sent NP« - -~ i)

—
more than 100,000 soldiers '

_—
into Afghanistan

Another case of PP attachment
ambiguity

(a) S
NP VP
‘ /\
NNS
‘ VP PP
workers PN N
VBD NP IN NP

| | | N
dumped NNS into DT NN
\

sacks a bin

Another case of PP attachment
ambiguity

(b) N
NP VP
\
NNS
| VBD NP
Kers |
WOrkKers dumped NP Bp

|
NNS IN NP
‘ | P
sacks into DT NN
| I

a bin

Another case of PP attachment
ambiguity

Rules Rules
S — NP VP S — NP VP
NP — NNS NP — NNS
VP — VP PP NP — NP PP
VP — VBD NP VP — VBD NP
NP — NNS NP — NNS

(a) PP — IN NP (b) PP — IN NP
NP — DT NN NP — DT NN
NNS — workers NNS — workers
VBD — dumped VBD — dumped
NNS — sacks NNS — sacks
IN — into IN — into
DT —a DT —a
NN — bin NN — bin

If PINP— NPPP | NP) > P(VP— VPPP | VP) then (b) is
more probable, else (a) is more probable.

Attachment decision is completely independent of the words

A case of coordination ambiguity

(@ NP (b) NP
/y\ 5 o
|
NP cc NP NNS
P | | N Ng

|
dogs in NNS

hmlses houses cats
NP — NP CC NP NP — NP CCNP
NP — NP PP NP - NP PP
NP - NNS NP - NNS
PP INNP PP INNP
NP — NNS by | NP NNS
@1 Np NN ®1 b5 NNs
NNS — dogs NNS — dogs
IN = in IN = in
NNS — houses NNS — houses
€C = and €C = and
NNS - cats NNS — cats

Here the two parses have identical rules, and therefore have
identical probability under any assignment of PCFG rule
probabilities

Weakening the independence
assumption of PCFG

Probabilities dependent on Lexical words
Solution
Lexicalize CFG : Each phrasal node with its head word

s Suatted
[RIS,

NP VP NP, VPuated
i — |

NNP VBD rr NNP sy VBDuatked PPinio
| i —— | 1

Sue walked P NP Sue walked Pinto NPore

| ——

—
into DT NN into DTune NN.tore
1

I I
the store the store

Background idea

Strong lexical dependencies between heads and their
dependents

Heads in Context-Free Rules

Add annotations specifying the “head” of each rule:

S =~ NP VP Vi = sleeps
- Vt = saw
VP = Vi NN —
VP = Vt NP NN $“mn
VP = VP PP NN = tei)escao e
NP = DT NN =1 P
NP = NP PP N .eth
PP = IN NP = W
IN = in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional
phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun,
IN=preposition

More about heads

o Each context-free rule has one “special” child that is the head
of the rule. e.g.,

S = NP VP (VP is the head)
VP = Vt NP (Vtis the head)
NP = DT NN NN (NN is the head)

e A core idea in linguistics
(X-bar Theory, Head-Driven Phrase Structure Grammar)

e Some intuitions:

— The central sub-constituent of each rule.

— The semantic predicate in each rule.

Adding Headwords to Trees

S(questioned)

NP(lawyer) VP(questioned)
N

DT NN .
| | Vt NP(witness)

the 1 \ T
¢ awyer questioned DT NN
|

the witness

Rules which recover heads:
Example rules for NPs

If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP
Else If the rule contains a JJ: Choose the rightmost JJ
Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

e.g.,
NP = DT NNP NN
NP = DT NN NNP
NP = NP PP
NP = DT 1
NP = DT

e A constituent receives its headword from its head child.

S = NP VP (S receives headword from VP)
VP = Vit NP (VP receives headword from Vt)
NP = DT NN (NP receives headword from NN)

Adding Headtags to Trees

S(questioned, Vt)

NP(lawyer, NN) VP(questioned, Vt)
B
DT NN
Vt NP(witness, NN)
the lawyer | PN
questioned DT NN

the witness

Explosion of number of rules

New rules might look like:
VP[gave] — V[gave] NP[man] NP[book]

But this would be a massive explosion in number of
rules (and parameters)

o Also propogate part-of-speech tags up the trees

Lexicalized Parsing, with
smoothing

Lexicalized parsing [Charniak 1997]

m A very simple, conservative model of lexicalized PCFG

m Probabilistic conditioning is “top-down” (but actual com-

putation is bottom-up)

Srose

T

NPproﬁts VProse

JJcorporate NNSproﬁts Vrose

corporate profits rose

Smoothing in [Charniak 1997]

P(h|ph,c,pc) = Ai(e)Pwie(hlph,c,pc)
+A2(e)Puie(h|C(ph),c, pc)
+A3(e)Puie(hlc,pc) + Ag(e)Puie(hlc)

m Aj(e) is here a function of how much one would expect

to see a certain occurrence, given the amount of training
data, word counts, etc.

m C(ph) is semantic class of parent headword

m Techniques like these for dealing with data sparseness

are vital to successful model construction

[Charniak 1997]

Generate head, then head constituent & rule

h = profits; c = NP

Srose
N ph = rose; pc =S
NP VProse
PAAN P(hlph,c,pc)
P(r|h,c,pc)
STOSE SI’OSE

/\ /\
NPproﬁts Vl:)rose NPpmﬁts VProse
N AN RS

N

h=head word, c=head consituent
ph=parent head word, parent head constituent

J] NNSproﬁrs
PAN

Charniak 1997]
Rule probability with similar smoothing

P(r|h,hc, pc)=hi(e)P(r|h,hc, pc)
M(e)P(r|h,he)
As3(e)P(r|C(h),hc)
M(e)P(r\hc, pc)
As(e)P(r|hc)

[Charniak 1997] smoothing example

P(prftirose,NP,S) P(corp|prft,]J, NP)

P(h|ph,c,pc) 0 0.245
P(h|C(ph),c,pc) 0.00352 0.0150
P(h|c,pc) 0.000627 0.00533
P(h|c) 0.000557 0.00418

m Allows utilization of rich highly conditioned estimates,
but smoothes when sufficient data is unavailable

m One can’t just use MLEs: one commonly sees previously
unseen events, which would have probability 0.

Sparseness and the Penn Treebank

m The Penn Treebank - 1 million words of parsed English
WSJ - has been a key resource (because of the widespread
reliance on supervised learning)

m But 1 million words is like nothing:

0 965,000 constituents, but only 66 WHADJP, of which
only 6 aren’t how much or how many, but there is an
infinite space of these (how clever/original/incompetent
(at risk assessment and evaluation))

m Most of the probabilities that you would like to compute,
you can’t compute

Sparseness and the Penn Treebank

m Most intelligent processing depends on bilexical statis-
tics: likelihoods of relationships between pairs of words.
m Extremely sparse, even on topics central to the WSJ:
O stocks plummeted 2 occurrences
o stocks stabilized 1 occurrence
o stocks skyrocketed 0 occurrences
o *stocks discussed 0 occurrences
m So far there has been very modest success augmenting
the Penn Treebank with extra unannotated materials or
using semantic classes or clusters (cf. Charniak 1997,
Charniak 2000) - as soon as there are more than tiny
amounts of annotated training data.

Collins 1997:
Markov model out from head

Charniak (1997) expands each phrase structure tree in

a single step.

m This is good for capturing dependencies between child
nodes

m But it is bad because of data sparseness

m A pure dependency, one child at a time, model is worse

m But one can do better by in between models, such as

generating the children as a Markov process on both

sides of the head (Collins 1997; Charniak 2000)

Lexicalized, Markov out from head

Modeling Rule Productions as Markov Processes

e Step 2: generate left modifiers in a Markov chain

Modeling Rule Productions as Markov Processes

e Step 1: generate category of head child

S(told,V[6])
4
S(told,V[6])
VP(tol‘d,V[()l)

P,(VP | S, told, V[6])

S(told, V[6])
27 VP(told,V[6])
4
S(told, V[6])

NP(Hillary,NNP) ~VP(told,V[6])

P,(VP | S, told, V[6]) x P;(NP(Hillary,NNP) | S,VP,told,V[6],LEFT)

Modeling Rule Productions as Markov Processes

e Step 2: generate left modifiers in a Markov chain

S(told,V[6])

7 NP(Hillary,NNP) VP(told,V[6])
3
S(told, V[6])

NP(yesterday,NN) ~ NP(Hillary,NNP) VP(told,V[6])

Py (VP | S, told, V[6]) x P;(NP(Hillary,NNP) | S,VP.told,V[6],LEFT) x
P,4(NP(yesterday,NN) | S,VP,told,V[6].LEFT)

Modeling Rule Productions as Markov Processes

e Step 2: generate left modifiers in a Markov chain

S(told, V[6])

” NP(yesterday,NN) NP(Hillary, NNP) VP(told,V[6])
4
S(told, V[6])

STOP NP(yesterday NN) NP(Hillary,NNP) VP(told,V[6])

P, (VP S, told, V[6]) x P;(NP(Hillary,NNP) | S,VP,told,V[6],LEFT) x
Py(NP(yesterday,NN) | S,VP,told,V[6].LEFT) x P;(STOP | S,VP,told,V[6].LEFT)

A Refinement: Adding a Distance Variable

e A = 1 if position is adjacent to the head.

S(told,V[6])
27 VP(told,V[6])
3

S(told,V[6])
NP(Hillary,NNP) VP(told,V[6])

P, (VP | S, told, V[6]) x
Py(NP(Hillary,NNP) | S,VPtold,V[6],LEFT.A = 1)

Modeling Rule Productions as Markov Processes

e Step 3: generate right modifiers in a Markov chain

S(told,V[6])
STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6]) 7
4
S(told,V[6])
STOP NP(yesterday.NN) NP(Hillary, NNP) VP(told.V([6]) STOP

Py(VP | S, told, V[6]) x P(NP(Hillary,NNP) | $,VPtold,V[6]LEFT) x
Pa(NP(yesterday,NN) | S,VP,told,V[6],LEFT) x P;(STOP | S,VP,t0ld,V[6],LEFT) x
P4(STOP | S,VP,told,V[6].RIGHT)

Adding Tags Making the Complement/Adjunct Distinction

S S

N /\
NP-C VP NP VP
\ \ | \
subject V modifier ~V
\ \
verb verb
S(told,V[6])

NP(yesterday,NN) ~ NP-C(Hillary,NNP) VP(told,V[6])
| |
NN NNP V(6]

| | |
yesterday Hillary told

Adding the Complement/Adjunct Distinction

S

/\
NP VP
\

\
subject V S(told,V[6])

verb

NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6])

| |
NN NNP V6]

| | \
yesterday Hillary told

e Hillary is the subject
e yesterday is a temporal modifier
o But nothing to distinguish them.

Adding dependency on structure

Weakening the independence
assumption of PCFG

Probabilities dependent on structural context
PCFGs are also deficient on purely structural grounds too
Really context independent?

Expansion % as Subj |% as Obj

NP — PRP 13.7% 21%
NP — NNP 3.5% 0.9%
NP — DT NN 5.6% 4.6%
NP — NN 1.4% 2.8%
NP — NP SBAR 0.5% 2.6%
NP — NP PP 5.6% 14.1%

Left Corner Parsing

to VB

Weakening the independence
assumption of PCFG

VP"S

TO VP"VP

see IN

advertising works

(@)

PP°VP

NP“PP

NNS

VP"S
VP"VP
VB"VP SBAR"VP
see IN"SBAR S"SBAR

if NP°S VP"S
NN°NP VBZ"VP

advertising works

(b)

Left-Corner Parsing

Technique for 1 word of lookahead in

algorithms like Earley’s

(can also do multi-word lookahead but it's
harder)

Basic Earley’s Algorithm

0ROOT. S attach

0S.NPVP |0OSNP.VP

ONP.DetN [ONPNP.PP

0NP.NP PP

0 NP . Papa

0 Det . the

ODet.a

0ROOT.S

0 NP Papa.

0S.NPVP

ONP . DetN

ONPNP.PP

ONP.NPPP

1VP.VNP

0 NP . Papa

1VP.VPPP

0 Det . the

ODet.a

predict

0ROOT.S |ONPPapa.
0S.NPVP [0SNP.VP
ONP.DetN predict
ONP.NPPP [1VP.VNP
ONP.Papa |[1VP.VPPP
0 Det . the 1PP.PNP
ODet.a

0 Papa
O0ROOT.S |ONPPapa.
0S.NPVP [0SNP.VP
ONP.DetN [ONPNP.PP
ONP.NPPP [1VP.VNP
ONP . Papa predict
0 Det . the 1PP.PNP
0Det.a 1V.ate
1V .drank
1V. snorted

0 Papa

0ROOT.S

0 NP Papa.

0S.NPVP

0SNP.VP

ONP . DetN

ONPNP.PP

ONP.NPPP

0 NP . Papa

1VP.VPPP

0 Det . the

TPP.PNP

ODet.a

1V.ate

1V . drank

1V . snorted

predict

0 Papa

0ROOT.S

0 NP Papa.

0S.NPVP

0SNP.VP

ONP . DetN

ONPNP.PP

ONP.NPPP

1VP.VNP

0 NP . Papa

1VP.VPPP

0 Det . the

ODet.a

1V.ate

1V .drank

1V snorted

1P . with

1-word lookahead would help

0 Papa ate

0ROOT.S |ONPPapa.

0S.NPVP [0SNP.VP

ONP.DetN [ONPNP.PP

ONP.NPPP [1VP.VNP

ONP.Papa [1VP.VPPP

0 Det . the 1PP.PNP

0Det.a 1V.ate

1V .drank

1V snorted

1P . with

predict

1-word lookahead would help

ate

0 Papa
0ROOT.S |ONPPapa.
0S.NPVP [0SNP.VP
ONP.DetN [8-NR-NP—RR
ONP.NPPP [1VP.VNP
ONP.Papa |[1VP.VPPP
0 Det . the 1.PP_P NP
0Det.a 1V.ate

1V drank
1V _snorted |
AP with

No point in looking for words or
constituents that can’t start with ate

With Left-Corner Filter

ate

0ROOT.S attach
0SNP.VP
ONP . DetN now “1 PP . P NP” won't get
created here either.
0 NP . Papa
0 Det . the

Need to know that ate can’t

0Det 2 start a PP.
Take closure of all categories

that it does start ...

ate

0 Papa ate

O0ROOT.S |ONPPapa.

0S.NPVP [0SNP.VP

ONP.DetN [@NRNP-PR

ONP.NPPP predict

ONP.Papa [1VP.VPPP

0 Det . the 1V.ate

0Det.a 4\ —drank

AV _snorted

0ROOT.S |ONPPapa.

0S.NPVP predict
ONPDetN hMDMD.DD
ONP.NPPP |1VP.VNP

ONP.Papa |[1VP.VPPP

0 Det . the

ODet.a

0 Papa 1 ate

0ROOT.S |ONPPapa.

0S.NPVP [0SNP.VP

ONP.DetN [@NRNP-PR

ONP.NPPP [1VP.VNP

ONP . Papa predict
0 Det . the 1V.ate
0Det.a 4M—drank

1V snorted |

Merging Right-Hand Sides

* Grammar might have rules
X—>AGHP
X—-BGHP
¢ Could end up with both of these in chart:
(2, X—=A.GHP)incolumn5
(2, X—=B.GHP)incolumn5
» But these are now interchangeabile: if one
produces X then so will the other
¢ To avoid this redundancy, can always use
dotted rules of this form: X - ... GHP

Merging Right-Hand Sides

* Similarly, grammar might have rules
X—>AGHP
X—-AGHQ
* Could end up with both of these in chart:
(2, X—=A.GHP)incolumn 5
(2, X—=A.GHQ)incolumn5
* Not interchangeable, but we’ll be processing
them in parallel for a while ...

* Solution: write grammar as X — AG H (PIQ)

Merging Right-Hand Sides

* Combining the two previous cases:
X—>AGHP
X—=>AGHQ
X—>BGHP
X-=BGHQ
becomes
X (AIB)GH(PIQ)
* And often nice to write stuff like
NP — (Det | £) Adj* N

Merging Right-Hand Sides

¢ Indeed, all rules for NP can be unioned into a
single DFA!

* If col 3 of the Earley table contains (1, @)

* We predict (3, start state of Adj) and (3, start
state of N) since Adj, N are the arcs leaving @
¢ If we find such an Adj or N,
we’ll follow its arc to attach .
and get (1,0) or (1, ©) Det (7 Adi
NP - @ O [e)

A N
N

Merging Right-Hand Sides
X— (AIB)GH(PIQ)
NP — (Det | £) Adj* N

* These are regular expressions!

¢ Build their minimal DFAs:

Faster parsing
with beam search

Probabilistic Left-Corner
Grammars

Use richer probabilistic conditioning

Rather than conditioning just on parent (as 2
in PCFGs) \

P(NP — Det Adj N | NP) vp
Condition on left corner and goal categories ,"
P(NP — Det Adj N | Det, VP, S) NP

Det Adj N

Allow left-to-right online parsing (which can
hope to explain how people build partial
interpretations online)

Pruning for Speed

- Heuristically throw away constituents that
probably won’t make it into a complete parse.

- Use probabilities to decide which ones.
- So probs are useful for speed as well as accuracy!
- Both safe and unsafe methods exist
- Throw x away if p(x) < 10-200
(and lower this threshold if we don’t get a parse)
- Throw x away if p(x) < 100 * p(y)
for some y that spans the same set of words
- Throw x away if p(x)*q(x) is small, where q(x) is an
estimate of probability of all rules needed to combine

x with the other words in the sentence
78

Dependency Parsing

Phrase Structure Grammars and

Dependency Grammars

Phrase Structure Grammar describes the structure of

sentences with phrase structure tree

Alternatively, a Dependency grammar describes the

structure with dependencies between words

One word is the head of a sentence and All other words are

dependent on that word

Dependent on some other word which connects to the

headword through a sequence of dependencies

v

Phrase Structure Grammars and
Dependency Grammars

Two key advantages of Dependency grammar are

Easy to use lexical information
Disambiguation decisions are being made directly with words
No need to build a large superstructure
Not necessary to worry about how to lexicalize a PS tree
Dependencies are one way of decomposing PS rules
Lots of rare flat trees in Penn Treebank — Sparse Data
Can get reasonable probabilistic estimate if we decompose it

vp vp vp
T

K el
NP PP PP V(P) NP) P(P) PP) 7 Np PP Voopp PP

The old man”Cate) the rice slowly
Evaluation
Method Recall Precision
PCFGs (Charniak 97) 70.6% 74.8%
Decision trees (Magerman 95) 84.0% 84.3%
Lexicalized with backoff (Charniak 97) 86.7% 86.6%
Lexicalized with Markov (Collins 97 M1) 87.5% 87.7%
“ with subcategorization (Collins 97 M2) 88.1% 88.3%
MaxEnt-inspired (Charniak 2000) 90.1% 90.1%

