Maximum Entropy
Lecture #13
Introd i to N 1L Pr

CMPSCI 585, Spring 2004

University of Massachusetts Amherst

Andrew McCallum

(Slides from Jason Eisner)

summary of half of the course (statistics)

Probability is Useful

We love probability distributions!
« We've learned how to define & use p(...) functions.
Pick best output text T from a set of candidates
+ maximize p4(T) for some appropriate distribution py
Pick best annotation T for a fixed input I
« maximize p(T | I); equivalently maximize joint probability p(I,T)
« often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T)
. are cases of this too:
+ we're maximizing an appropriate p1 (T) defined by p(T | I)
Pick best probability distribution (a meta-problem!)
« really, pick best parameters 6:
« maximum likelihood; smoothing; EM if unsupervised (incomplete data)
* Smoothing: max p(0|data) = max p(6, data) =p(6)p(data|0)

summary of other half of the course (linguistics)

Probability is Flexible

* We love probability distributions!
* We've learned how to define & use p(...) functions.
* We want p(...) to define probability of /inguistic objects

. of words, tags, morphemes, phonemes (n-grams, FSMs,
FSTs; ,)

. (naive Bayes;)
. of (non)terminals (PCFGs;)
» We've also seen some not-so-probabilistic stuff
. , . Could be stochasticized?
« Methods can be quantitative & data-driven but not fully probabilistic:

» But probabilities have wormed their way into most things
¢ p(...) has to capture our intuitions about the ling. data

really so alternative?

An Alternative Tradition

« Old Al hacking technique:
« Possible parses (or whatever) have scores.
« Pick the one with the best score.
» How do you define the score?
« Completely ad hoc!
« Throw anything you want into the stew
« Add a bonus for this, a penalty for that, etc.
» “Learns” over time — as you adjust bonuses and
penalties by hand to improve performance.
» Total kludge, but totally flexible too ...
« Can throw in any intuitions you might have

really so alternative?

An Alternative Tradition

* Old4 Prohahilistic Revolution
" 72 NotReally a Revolution,
. H Critics Say
. Log-probabilities no more
. than scores in disguise
e “Leal)) uses and
pengl “We’re just adding stuffup |ce. ©
« Total like the old corrupt regime
» Cal did,” admits spokesperson [

Nuthin’ but adding weights

* N-grams: ... +log p(w7 | w5,w6) + log(w8 | w6, w7) + ...

PCFG: 1og p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) ...
HMM tagging: ... + log p(t7 | t5, t6) + log p(w7 | t7) + ..
NOiSY channel: [Iog p(source)] + [Iog p(data | source)]

Naive Bayes:
log p(Class) + log p(featurel | Class) + log p(feature2 | Class) ...
Note: Just as in probability, bigger weights are better.

Nuthin’ but adding weights

* Weight weight
. conditional log-probs (= 0)

".2,.4,.6,.8! We're not gonna take your bait!"

¢ Can estimate our parameters automatically
* e.g., logp(t7 | t5, t6) (trigram tag probability)
« from supervised or unsupervised data (ratio of counts)
e Qur results are more meaningful
« Can use probabilities to place bets, quantify risk
« e.g., how sure are we that this is the correct parse?
e Qur results can be meaningfully combined = modularity!
« Multiply indep. conditional probs — normalized, unlike scores
« p(English text) * p(English phonemes | English text) * p(Jap.
phonemes | English phonemes) * p(Jap. text | Jap. phonemes)

« p(semantics) * p(syntax | semantics) * p(morphology | syntax) *
p(phonology | morphology) * p(sounds | phonology)

» Ad-hoc approach does have one advantage

» Consider e.g. Naive Bayes for text categorization:

e Buy this supercalifragilistic Ginsu knife set
for only $39 today ..

* Some useful features:

. Buy
4‘“\\\\ \\@\\ supercalifragilistic
5|02 $100
91 -

« Naive Bayes: pick C maximizing p(C) * p(feat 1 | C) * ...
» What assumption does Naive Bayes make? True here?

» Ad-hoc approach does have one advantage

« Consider e.g. Naive Bayes for text categorization:

e Buy this supercalifragilistic Ginsu knife set
for only $39 today ..

* Some useful features:

EQ“\\\\ \\u\\‘\ 50% of spam has this — 25x more likely than in ham
51.02 . $100

90% of spam has this — 9x more likely than in ham
91 .

« Naive Bayes: pick C maximizing p(C) * p(feat 1 | C) * ...
» What assumption does Naive Bayes make? True here?

» But ad-hoc approach does have one advantage

|
» Some useful features of this message: aready included

e S @
.51.02. $100 -1 |-5.6
9l1 . -15/-33 -15/-33

» Naive Bayes: pick C maximizing p(C) * p(feat 1 | C) * ...
» What assumption does Naive Bayes make? True here?

» Naive Bayes needs overlapping but independent features
» But not clear how to restructure these features like that:

. Buy
. supercalifragilistic
. $100

* Boy, we'd like to be able to throw all that useful stuff in
without worrying about feature overlap/independence.

* Well, maybe we can add up scores and pretend like we
got a log probability:

» Naive Bayes needs overlapping but independent features
» But not clear how to restructure these features like that:
+4 . Buy 5 17
+0.2 supercalifragilistic O_a\'.)
+1 s100 ¢ ¢
+2
-3
+5

* Boy, we'd like to be able to throw all that useful stuff in
without worrying about feature overlap/independence.

* Well, maybe we can add up scores and pretend like we
got a log probability: log p(feats | spam) = 5.77

Oops, then p(feats | spam) = exp 5.77 = 320.5

Renormalize by 1/Z to get a
Log-Linear Model

« p(feats | spam) : T
e p(m | spam) = (1/2(1)) exp 3; A; fi(m) where

» The weights we add up are basically arbitrary.

* They don't have to mean anything, so long as they give
us a good probability.

« Why is it called “log-linear"?

Why Bother?

» Gives us probs, not just scores.
» Can use them to bet, or combine w/ other probs.

» We can now learn weights from data!
» Choose weights A; that maximize logprob of labeled
training data = log Hj p(cj) p(mj | cj)
« where cje{ham,spam} is classification of message m;
« and p(mj | cj) is log-linear model from previous slide
» Convex function — easy to maximize! (why?)

* But: p(mj | cj) for a given A requires Z(A): hard!

Attempt to Cancel out Z

Set weights to maximize]'[J- p(cj) p(mj | cj)
 where p(m | spam) = (1/Z())) exp 3; A; fi(m)
« But normalizer Z()) is awful sum over all possible emails

So instead: Maximize]'[J- p(c; | mj)
« Doesn’t model the emails mj, only their classifications G
» Makes more sense anyway given our feature set

p(spam | m) = p(spam)p(m|spam) / (p(spam)p(m|spam)+p(ham)p(m|ham
Z appears in both numerator and denominator

Alas, doesn’t cancel out because Z differs for the spam and ham models
But we can fix this ...

So: Modify Setup a Bit

« Instead of having separate models
p(m|spam)*p(spam) vs. p(m|ham)*p(ham)
< Have just one joint model p(m,c)
gives us both p(m,spam) and p(m,ham)
 Equivalent to changing feature set to:

Buy
supercalifragilistic

Buy

. supercalifragilistic

* No real change, but 2 categories now share
single feature set and single value of Z()\)

Now where ce{ham, spam}

Now we can cancel out Z

Old: choose weights A; that maximize prob of
labeled training data =]'[J- p(mj, cj)

New: choose weights ; that maximize prob of
labels given messages =]‘[J- p(cj | mj)

Now Z cancels out of conditional probability!
* p(spam | m) = p(m,spam) / (p(m,spam) + p(m,ham))
= exp 3; A fij(m,spam) / (exp 3; A, fi(m,spam) + exp 3; A; f;(m,ham))
« Easy to compute now ...
. Hj p(cj | mj) is still convex, so easy to maximize too

Maximum Entropy

» Suppose there are 10 classes, A through J.
« I don't give you any other information.
* Question: Given message m: what is your guess for p(C | m)?

» Suppose I tell you that 55% of all messages are in class A.
* Question: Now what is your guess for p(C | m)?

» Suppose I also tell you that 10% of all messages contain Buy
and 80% of these are in class A or C.

* Question: Now what is your guess for p(C | m),
if m contains Buy?

Maximum Entropy

A B |[C D |[E |[F |G |H [T |]

BUY .051 |.0025 |.029 |.0025 |.0025 |.0025 |.0025 |.0025 |.0025 |.0025

Other | .499 |.0446 |.0446 |.0446 |.0446 |.0446 |.0446 |.0446 | .0446 | .0446

e Column A sums to 0.55 (“55% of all messages are in class A")

Maximum Entropy

A B |[C D |[E |[F |G |H [T |]

Maximum Entropy

BUY .051 |.0025 |.029 |.0025 |.0025 |.0025 |.0025 |.0025 |.0025 |.0025

A B |[C D |[E |[F |G |H [T |]

Other | .499 |.0446 |.0446 |.0446 |.0446 |.0446 |.0446 |.0446 | .0446 | .0446

BUY .051 |.0025 |.029 |.0025 |.0025 |.0025 |.0025 |.0025 |.0025 |.0025

e Column A sums to 0.55
¢ Row Buy sums to 0.1 (“10% of all messages contain Buy")

Other | .499 |.0446 |.0446 |.0446 |.0446 |.0446 |.0446 |.0446 | .0446 | .0446

e Column A sums to 0.55
¢ Row Buy sums to 0.1
* (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%")

Given these constraints, fill in cells “as equally as possible”:
maximize the entropy (related to cross-entropy, perplexity)

Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - ...
Largest if probabilities are evenly distributed

Maximum Entropy

A B |[C D |[E |[F |G |H [T |]

BUY .051 |.0025 |.029 |.0025 |.0025 |.0025 |.0025 |.0025 |.0025 |.0025

Other | .499 |.0446 |.0446 |.0446 |.0446 |.0446 |.0446 |.0446 | .0446 | .0446

e Column A sums to 0.55
¢ Row Buy sums to 0.1
* (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%")

Given these constraints, fill in cells “as equally as possible”:
maximize the entropy

Now p(Buy, C) = .029 and p(C | Buy) = .29
We got a compromise: p(C | Buy) < p(A | Buy) < .55

Generalizing to More Features

SF10p”

Othey,

A B |[C D |[E |[F |G |H

Buy .051 |.0025 |.029 |.0025 |.0025 |.0025 |.0025 |.0025

Other | 499 |.0446 |.0446 | .0446 |.0446 |.0446 |.0446 | .0446

What we just did

* For each feature (“contains Buy”), see what
fraction of training data has it

« Many distributions p(c,m) would predict these
fractions (including the unsmoothed one where all
mass goes to feature combos we've actually seen)

» Of these, pick distribution that has max entropy

e Amazing Theorem: This distribution has the
form

» So it is log-linear. In fact it is the same log-linear
distribution that maximizes Hj p(mj, cj) as before!

 Gives another motivation for our log-linear approach.

Log-linear form derivation

» Say we are given some constraints in the form of
feature expectations:

Zp(.r]fi(.r) =q;
T

 In general, there may be many distributions p(x) that
satisfy the constraints. Which one to pick?

» The one with maximum entropy (making fewest
possible additional assumptions---Occum’s Razor)
« This yields an optimization problem

max H(p(x)) = — Zp(‘z') log p(x)

1
Subject to Zp(,r}f]'(.r,l = q;,Vi and Z[}(.z‘) =1
T T

Log-linear form derivation
® To solve the maxent problem, we use Lagrange multipliers:
L=— Zp{x) logp(x) — Z 0; <Z p(x) filx) — (y,) —p (Zp(x) - l)

oL
= 1t logplx) = 3 0fi(x) —

Ip(x)

px) =" texp {Z ﬁ,_/',(X]}
Z(0) =" = exp {Z 9,/',[)(}}

; _ 1 (
p(x|0) = ZW)L.\D{ZH,/,[X)}

® So feature constraints + maxent implies exponential family.

® Problem is convex, so solution is unique.

MaxEnt = Max Likelihood

Define two submanifolds on
the probability simplex p(x).

The first is £, the set of all

exponential family

distributions based on a M
particular set of features fi(x).

The second is M, the set of

all distributions that satisfy the

feature expectation P
constraints. 2

They intersect at a single
distribution p,;, the maxent,

maximum likelihood

(0, D) = z n(x) log p(x[0)

= n(x) | D04 — log Z{ﬂ})
=3 " n(x) Y 0:fi(x) - Nlog Z(0)

x i

(.l L0
26~ ; n(x)fi(x) — N ﬁlngd{ﬂ}

=D n()fi(x) = N pl6) fi(x)
= Y bl 0 = 30 ") = 3 plx) i)

x X

Derivative of log partition function is the expectation of the feature.

At ML estimate, model expectations match empirical feature counts.
is]

Recipe for a Conditional
MaxEnt Classifier

1. Gather constraints from training data:
ay=Elfyl= > liylwjyp)
"',/"U_/ED
2. Initialize all parameters to zero.
3. Classify training data with current parameters. Calculate
expectations. Eolfiy) = Z Z el !/ll-"_,’l fiylzj.)

.I‘J‘ED !//

4. Gradient is Eif,-y] — Eg|fy)
Take a step in the direction of the gradient
6. Until convergence, return to step 3.

o

Overfitting Solutions to Overfitting

« If we have too many features, we can choose « Throw out rare features.
weights to model the training data perfectly. * Require every feature to occur > 4 times, and > 0
times with ling, and > 0 times with spam.
« If we have a feature that only appears in spam + Only keep 1000 features.
training, not ling training, it will get weight « to » Add one at a time, always greedily picking the one
maximize p(spam | feature) at 1. that most improves performance on held-out data.
« Smooth the observed feature counts.
« These behaviors overfit the training data. * Smooth the weights by using a prior.

¢ max p(r|data) = max p(), data) =p(\)p(data|r)

« Will probably do poorly on test data.
P y P y « decree p()) to be high when most weights close to 0

