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Today’s Main Points

Why IE?

Components of the IE problem and solution
Approaches to IE segmentation and classification
— Sliding window

— Finite state machines

IE for the Web
Semi-supervised |IE

Later: relation extraction and coreference
...and possibly CRFs for IE & coreference
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Example: The Problem
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Extracting Job Openings from the Web
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Data Mining the Extracted Job Information
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IE from Research Papers

[McCallum et al “99]

Reinforcement Learning: A Survey
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Mining Research Papers
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What is “Information Extraction’

As a task: I Filling slots in a datab

b.

from

of text.

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEQ Bill
Gates railed against the economic philosophy
of open-source software with Orwellian
fervor, denouncing its communal licensing as
a"cancer” that stifled technological
innovation.

Today, Microsoft claims to "love" the open-
source concept, by which software code is
made public to encourage improvement and
development by outside programmers. Gates
himself says Microsoft will gladly disclose its
crown jewels—the coveted code behind the
Windows operating system-to select
‘customers.

“Wa can bs opan sourca. We low ths concept
of shared source," said

Microsoft VE. "That's a super- .mpon-msmﬂ
for us interms of code access."

Richard Stallman, founder of the Free
Software Foundation, countered saying...

NAME

TITLE

Bill Gates
Bill Veghte
Richard Stallman
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Free Soft
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What is “Information Extraction’
As a task: I Filling slots in a database from sub of text.

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill
Gates railed against the economic philosophy
of open-source software with Orwellian
fervor, denouncing its communal licensing as
a"cancer” that stifled technological
innovation.

Today, Microsoft claims to "love" the open-
source concept, by which software code is
made public to encourage improvement and
development by outside programmers. Gates
himself says Microsoft will gladly disclose its
crown jewels—the coveted code behind the
Windows operating system-to select
‘customers.

TWa can bs opan source. We low th concent
of shared source," said Bill Veg!
Microsoft VP. “That's a super- .mpon.m shift
for us in terms of code access."

Richard Stallman, founder of the Free
Software Foundation, countered saying...

What is “Information Extraction’

As a family
of techniques:

Information Extraction =
segmentation
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What is “Information Extraction”

Asa _fam"y Information Extraction =
of technlques: segmentation + classification
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fervor, denouncing its communal licensing as

a"cancer” that stifled technological Bill Gates
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customers. Richard Stallman

"We can be open source. We love the concept founder

of shared source," said Bill Veghte, a .
VP, "That's a super-important shift Free Software Foundation

Microsoft
for us in terms of code access."

Richard Stallman, founder of the Free
Software Foundation, countered saying...

What is “Information Extraction”

Asa _fam"y Information Extraction =
of technlques: segmentation + classification + association
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For years, Microsoft Corporation CEQ Bill

Gates railed against the economic philosophy Microsoft Corporation

of open-source software with Orwellian CEO

fervor, denouncing its communal licensing as

a "cancer" that stifled technological Bill Gates

innovation. icroso
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customers. Richard Stallman

"We can be open source. We love the concept founder

of shared source,” said Bill Veghte, a .
VP. "That's a super-important shift Free Software Foundation

Microsoft
for us in terms of code access."

Richard Stallman, founder of the Free
Software Foundation, countered saying...

What is “Information Extraction”

Asa fam"y Information Extraction =

of technlques: segmentation + classification + association + clustering
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IE in Context

Create ontology

Spider

D Filter by relevance
IE
D D D Segment

Classify

D Associate
DU Clustor

Train extraction models

Load DB

Label training data Data mine

IE History

Pre-Web
* Mostly news articles
— De Jong's FRUMP [1982]
+ Hand-built system to fill Schank-style “scripts” from news wire

— Message Understanding Conference (MUC) DARPA ['87-'95],
TIPSTER ['92-'96]

* Most early work dominated by hand-built models
— E.g. SRI's FASTUS, hand-built FSMs.

— But by 1990’s, some machine learning: Lehnert, Cardie, Grishman and
then HMMs: Elkan [Leek '97], BBN [Bikel et al '98]

Web
« AAAI 94 Spring Symposium on “Software Agents”
— Much discussion of ML applied to Web. Maes, Mitchell, Etzioni.
+ Tom Mitchell’'s WebKB, ‘96
— Build KB’s from the Web.
« Wrapper Induction
— Initially hand-build, then ML: [Soderland "96], [Kushmeric "97]....

What makes IE from the Web Different?

Less grammar, but more formatting & linking

Newswire Web

www.apple.comiretail

Apple to Open lts First Retail Store
in New York City

MACWORLD EXPO, NEW YORK--July 17, 2002

Apple's first retail store in New York City will open o i e
in Manhattan's SoHo districton Thursday, July 18 s - -

at8:00 a.m. EDT. The SoHo store will be Apple's fimors. Yo e i,
largest retail store to date and is a stunning "
example of Apple's commitment to offering
customers the world's best computer shopping
experience.

"Fourteen months after opening our first retail
store, our 31 stores are atracting over 100,000
visitors each week," said Steve Jobs, Apple's CEO.
"We hope our SoHo store will surprise and delight
both Mac and PC users who want to see
everything the Mac can do to enhance their digital

frdy o ook

lifestyles."

The directory structure, link structure,
formatting & layout of the Web is its own
new grammar.




Landscape of IE Tasks (1/4):
Pattern Feature Domain

oo
Astro Teller is the CEO and co-founder of B Steven Minton - FouncercT0 o

BodyMedia. Astro holds a Ph.D. in Artificial Assoriaon of Al Iteligence and was
Intelligence from Carnegic Mellon University, the founder of the Journal of Atcz
‘where he was inducted as a national Hertz fellow. Vit was a facuy member # USC and 2
His M.S. in symbolic and heuristic computation
and B.S. in computer science are from Stanford
University. His work

‘Camegie Mellon Unversty,Minton has been 2
\SA Ames and

‘business has appeared in international media from taught at Stanford, UC Berkeley and USC.
the New York Times to CNN to NPR,
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Landscape of IE Tasks (2/4):
Pattern Scope

W . ifi G ifi wi y ifi
Formatting Layout Language
Amazon.com Book Pages Resumes University Names

Jnon D M. Reanie

0930 e Tol:Pausiey s A Geners Appr.
amazoncom. i o e Uy A

Or. Steven linton - FounderCT0
Or_Minton's a fllowofthe American
Associaion of Arifca neligence and was

or
taughtat Stanfor, UC Berkeley and USC.

Frank Huybrechts - COO
i Hujbrechts has over 20

Landscape of IE Tasks (3/4):
Pattern Complexity

E.g. word patterns:
Closed set Regular set

U.S. states U.S. phone numbers

He was born in Alabama...
The big Wyoming sky... The CALD main office can be

reached at 412-268-1299
Complex pattern Ambiguous patterns

U.S. postal addresses many sources of evidence
University of Arkansas Person names
P.O. Box 140 ...was among the six houses
Hope. AR 71802 sold by Hope Feldman that year.
Headquarters: Pawel Opalinski, Software

i Engineer at WhizBang Labs.
Cincinnati. Ohio 45210

Landscape of IE Tasks (4/4):
Pattern Combinations

Jack Welch will retire as CEO of General Electric tomorrow. The top role
at the Connecticut company will be filled by Jeffrey Immelt.

Single entity Binary relationship N-ary record
Person: Jack Welch Relation: Person-Title Relation: Succession
Person: Jack Welch Company: General Electric
. Title: CEO Title: CEO
Person: Jeffrey Immelt out: Jack Welsh
In: Jeffrey Immelt

Relation: Company-Location
Company: General Electric
Location: Connecticut

Location: Connecticut

“Named entity” extraction

Evaluation of Single Entity Extraction
TRUTH:

Michael Kearns and Sebastian Seung will start Monday's tutorial, followed by Richard M. Karpe and Martin Cooke.

PRED:
Michael Kearns and Sebastian Seung will start Monday's tutorial, followed by Richard M. Karpe and Martin
Cooke.

# correctly predicted segments

# predicted segments
# correctly predicted segments 2
Recall = = —
# true segments 4
1
F1 = Harmonic mean of Precision & Recall =

((1IP) + (1/R)) [ 2

State of the Art Performance

» Named entity recognition
— Person, Location, Organization, ...
— F1in high 80’s or low- to mid-90’s
Binary relation extraction

— Contained-in (Location1, Location2)
Member-of (Person1, Organization1)

— F1in60’s or 70’s or 80’s

» Wrapper induction
— Extremely accurate performance obtainable
— Human effort (~30min) required on each site




Landscape of IE Techniques (1/1):

Lexicons

Abraham Lincoln was born in Kentucky.

Boundary Models

IAhra.ham Lincoln fjvas born in Kentucky.
>

BEGN

Classfier

BEGN END BEGN END

Models

Classify Pre-segmented
Candidates

Abmhan Lincaln was born in Kentucky.

Sliding Wi

Abraham Lincoln was born in Kentucky.
>

4 mamer Classtier
Classtier
which dse? I
Try aitornate
window izet:

Abraham Lincoln was born in Kentucky.

®@ ® O oo e

Most kel stato soquence?

- o

NNP

which class?

NNP OV
NP
—
s

Any of these models can be used to capture words, formatting or both.

voP

Abraham Lincoln was born in Kentucky.

®@ ® O 00 @

Sliding Windows

E.g.
Looking for
seminar
location

Extraction by Sliding Wind

ow

GRAND CHALLENGES FOR MACHINE LEARNING

Jaime Carbonell
School of Computer Science
Carnegie Mellon University

3:30 pm
7500 Wean Hall

Machine learning has evolved from
obscurity in the 1970s into a vibrant and
popular discipline in artificial
intelligence during the 1980s and 1990s.
As a result of its success and growth,
machine learning is evolving into a
collection of related disciplines:
inductive concept acquisition, analytic
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theory (e.g. PAC learning), genetic
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A “Naive Bayes” Sliding Window Model

[Freitag 1997]

00 : pm Place : Wean Hall Rm 5409 Speaker : Sebastian Thrun
W, Wooow, Wen Wi

2~

v~ — ° v — ~
prefix contents suffix

P(“Wean Hall Rm 5409” = LOCATION) =

A
Prior probability  Prior probability Probability Probability Probability
of start position of length prefix words contents words suffix words

Try all start positions and reasonable lengths  Estimate these probabilities by (smoothed)

counts from labeled training data.

If P(“Wean Hall Rm 5409” = LOCATION) is above some threshold, extract it.

Other examples of sliding window: [Baluja et al 2000]
(decision tree over individual words & their context)

“Naive Bayes” Sliding Window Results

Domain: CMU UseNet Seminar Announcements

GRAND CHALLENGES FOR MACHINE LEARNING

Jaime Carbonell
School of Computer Science
Carnegie Mellon University

Field F1
3:30 pm . 2o
7500 Wean Hall Perso_n Name: 30%
Location: 61%
Machine learning has evolved from obscurity Start Time: 98%
in the 1970s into a vibrant and popular .

discipline in artificial intelligence
during the 1980s and 1990s. As a result
ess and growth, machine learning
is evolving into a collection of related
disciplines: inductive concept acquisition,
analytic learning in problem solving (e.g.
analogy, explanation-bas

learning theory (e.g. P:

d learning),

earning),

genetic algorithms, connectionist learning,

hybrid systems, and so on.

Problems with Sliding Windows
and Boundary Finders

+ Decisions in neighboring parts of the input
are made independently from each other.

— Naive Bayes Sliding Window may predict a
“seminar end time” before the “seminar start time”.

— It is possible for two overlapping windows to both
be above threshold.

— In a Boundary-Finding system, left boundaries are
laid down independently from right boundaries,
and their pairing happens as a separate step.

Finite State Machines

Hidden Markov Models

HMMs are the standard sequence modeling tool in
genomics, music, speech, NLP, ...

p -1 t 1 transitions

observations

Generates: o, o, o,

State

seaence O O @ @ O @ O O B

O:z:[fr:‘coc" 0 0y 03 04 05 05 07 O P(S’O)O(HP(S"SH)P(D'|S')

Parameters: for all states S={s,,5,,...}
Start state probabilities: P(s,)
Transition probabilities: P(s,|s,_;)

: PR Usually a multinomial over
Observation (emission) probabilities: P(0,1s,) acomic. fxed aiphabet
Training:

Maximize probability of training observations (w/ prior)

IE with Hidden Markov Models

Given a sequence of observations:

Yesterday Lawrence Saul spoke this example sentence.

and a trained HMM: p

Find the most likely state sequence: (Viterbi)

O e eO O O O

Lawrence Saul

Any words said to be generated by the designated “person name”
state extract as a person name:

Person name: Lawrence Saul




HMMs for IE:
A richer model, with backoff

HMM Example: “Nymble”

[Bikel, et al 1998],
[BBN “IdentiFinder”]

Task: Named Entity Extraction
P(s,| 5. 0,.1) Plog| 845 5.1)
or P(o,| s,, 0,

end-of-
start-of- . sentence
sentence

(Five other name classes)

P(stl st-I) P(Dtl st)
Train on 450k words of news wire text. P(st) P(ot)
Results: |Case Language =~ F1.
Mixed  English 93%
Upper  English 91%
Mixed  Spanish 90%

Other examples of shrinkage for HMMs in |E: [Freitag and McCallum ‘99]

HMMs for IE:
Augmented finite-state structures
with linear interpolation

Simple HMM structure for IE

« 4 state types:
— Background (generates words not of interest),
— Target (generates words to be extracted),
— Prefix (generates typical words preceding target)
— Suffix (words typically following target)

A

(B
®©-@-©

« Properties: '

— Extracts one type of target (e.g. target = person name), we will build one
model for each extracted type.

— Models different Markov-order n-grams for different predicted state
contexts.

— even thought there are multiple states for “Background”, state-path given
labels is unambiguous. Therefore model parameters can all be computed
using counts from labeled training data

More rich prefix and suffix structures

* In order to represent more context, add more
state structure to prefix, target and suffix.

» But now overfitting becomes more of a
problem.

%‘
Figure 1: Two example HMM structures.  Circle nodes

represent non-target states; hexagon nodes represent target

states.

Linear interpolation
across states
Is defined in terms of some « Shrinkage smoothes the

hierarchy that represents the distribution of a state towards
expected similarity between that of states that are more

parameter estimates, with the " e
estimates at the leaves uniform [_] data-rich ) o
Shrinkage based parameter A « Ituses alinear combination of
estimate in a leaf of the tobal [_] probabilities

hierarchy is a linear sloba I

interpolation of the estimates in
all distributions from the leaf to

ist root context gL ‘
Prﬁfix% O %ﬁ“’?h
C-O-O-0-0-O-0-0C-




Evaluation of linear interpolation

» Data set of seminar announcements.

speaker | location | stime | etime
None 0.513 0.735 | 0.991 [ 0.814
Uniform | 0.614 0.776 | 0.991 | 0.933
Global 0.711 0.839 ] 0.991 [ 0.595
Hier. 0.672 0.850 0.987 | 0.584

Table 4: Effect on F1 performance of different shrink-
age configurations on four seminar announcement fields,
given a topology with a window size of four and four
parallel length-differentiated target paths.

IE with HMMs:
Learning Finite State Structure

Information Extraction
from Research Papers

References Headers

Leslie Pack Kaelbling, Michael L. Littman

and Andrew W. Moore. Reinforcement

Learning: A Survey. Journal of Artificial

Reinforcement Learning: A Survey

Intelligence Research, pages 237-285,
May 1996.

Mellon Uniscraity, 5000 Forbs Ascnue

Abstract

1. Introduction

Reink ¢ lescning dates back to the carly ey of cybernetics and work in stotie

Information Extraction with HMMs
[Seymore & McCallum ‘99]

Importance of HMM Topology

« Certain structures better capture the
observed phenomena in the prefix, target
and suffix sequences

» Building structures by hand does not scale to
large corpora

* Human intuitions don’t always correspond to
structures that make the best use of HMM
potential

Structure Learning

Two approaches

» Bayesian Model Merging
Neighbor-Merging
V-Merging

+ Stochastic Optimization
Hill Climbing in the possible structure space
by spiltting states and gauging performance
on a validation set




Bayesian Model Merging
+ Maximally Spesific Model

) e e <R

« Neighbor-merging

mo»ogo

« V-merging

.%‘ ro®

Bayesian Model Merging

« lterates merging states until an optimal tradeoff
between fit to the data and model size has been
reached

P(M | D) ~P(D | M) P(M) M = Model
D = Data

CA) B.D C -

P(D | M) can be calculated with the Forward algorithm

P(M) model prior can be formulated to reflect a preference for smaller
models

ittt

HMM Emissions

ICML 1997.

=) = bmisson o
to appear in

carnegie mellon university.

stochastic optimization...
reinforcement learning
model building mobile robot...

2 million words of BibTeX data from the Web

HMM Information Extraction Results

Per-word error rate

Headers References
Laboted dataonly | 0-095
Labeled dmaonly | 0-087 (8% better)
Bbrex s 0.076 (20% better)
Mode! Marging 0.071 (25% better)  0.066

Stochastic Optimization

« Start with a simple model

« Perform hill-climbing in the space of possible
structures

« Make several runs and take the average to avoid
local optima

—— Background

Prefix Suffix Simple Model

T Target

——» Complex Model with
prefix/suffix length of 4

State Operations

« Lengthen a prefix

« Split a prefix

« Lengthen a suffix

« Split a suffix

« Lengthen a target string
« Split a target string

« Add a background state




LearnStructure Algorithm

Part of Example Learned Structure

Locations

Speakers

Accuracy of Automatically-Learned

Structures
speaker | location | acquired | dlramt | tifle | company | conf | deadline || Average
Grown HMM 76.9 87.5 41.3 54.4 58.3 65.4 27.2 46.5 57.2
vs. SRV +19.8 +16.0 +1.1 -1.6 — — — +8.8
vs. Rapier +239 +14.8 +12.5 +15.1 | -11.7 +24.9 — +13.3
vs. Simple HMM +24.3 +5.6 +14.3 +5.6 +5.7 +11.1 +15.7 +6.7 +11.1
vs. Complex HMM -2.1 +6.7 +7.5 -0.3 -0.3 +19.1 +0.0 6.8 +3.0

Table 2: Difference in F1 performance between the HMM using a learned structure and other methods. The +

numbers indicate how much better our Grown HMM did than the alternative method.

Tree-based Models

Limitations of HMM/CRF models

+ HMM/CRF models have a linear structure
* Web documents have a hierarchical
structure
— Are we suffering by not modeling this structure
more explicitly?
* How can one learn a hierarchical extraction
model?

— Coming up: STALKER, a hierarchical wrapper-
learner

— But first: how do we train wrapper-learners?

Extracting from one web site

— Use site-specific formatting information: e.g., “the JobTitle is a bold-
faced paragraph in column 2"

— For large well-structured sites, like parsing a formal language

Extracting from many web sites:

— Need general solutions to entity extraction, grouping into records,
etc.

— Primarily use content information

— Must deal with a wide range of ways that users present data.

— Analogous to parsing natural language

Problems are complementary:

— Site-dependent learning can collect training data for a site-
independent learner

— Site-dependent learning can boost accuracy of a site-independent
learner on selected key sites
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STALKER: Hierarchical boundary finding
[Muslea,Minton & Knoblock 99]
* Main idea:

— To train a hierarchical extractor, pose a series of
learning problems, one for each node in the
hierarchy

— At each stage, extraction is simplified by knowing
about the “context.”
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Stalker: hierarchical decomposition of two
web sites

LA-Weekly Document

LIST( Restaurant )
name address phone review LIST(CreditCards)

credit_card

ZAGAT Document

name food decor service cost LIST( Addresses ) review

street city area—code phone-number

Stalker: summary and results

* Rule format:
— “landmark automata” format for rules
« E.g.: <a>W. Cohen</a> CMU: Web IE </li>
« STALKER: BEGIN = SkipTo(<, /, a, >), SkipTo(:)
» Top-down rule learning algorithm
— Carefully chosen ordering between types of rule
specializations
» Very fast learning: e.g. 8 examples vs. 274
« Alesson: we often control the IE training data!




Learning Formatting Patterns “On the Fly”:

| “Scoped Learning”

LEAD GENERATION (NY) 1

NATIONAL ACCOUNT SALES MANAGER (NY) I

[Bagnell, Blei, McCallum, 2002]

SALES ENGINEI
WITH SECURITY
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1. For each of the D documents:
Generate the multinomial formatting
feature parameters f from p(f|a)

2. For each of the N words in the

a)

Scoped Learning Generative Model

document:

a

o

C

Generate the nth category ¢, from

p(cy).

Generate the nth word (global feature)
from p(w,|c,, Q)
Generate the nth formatting feature
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Formatting is regular on each site, but there are too many different sites to wrap.
Can we get the best of both worlds?

(local feature) from pO’,,|c,,, f)

p(¢7c7w7ﬂ =pa Hp pa(wTI'cﬂ) (fn|cn7¢)

Inference

Given a new web page, we would like to classify each word
resulting in ¢ = {c, C,,..., C;}

JTIA, plwalen)p(fulen, @)p(cn)p(e)dd
JTIN, .. 2(walea)p(Falen, $)p(ca)p()do

plelw, ) =

This is not feasible to compute because of the integral and
sum in the denominator. We experimented with two
approximations:

- MAP point estimate of f

- Variational inference

MAP Point Estimate

If we approximate f with a point estimate, £, then the integral
disappears and c decouples. We can then label each word with:

Cp = arg néax P(wn|cn)p(fnlcn, 9)p(cn)
A natural point estimate is the posterior mode: a maximum likelihood
estimate for the local parameters given the document in question:
¢ = arg mgxp(qﬁlf-, w)
E-step:

p(t“) (cn|wn7 I ¢)
M-step:

beg =2 (flop) o
{nicn=c,fa=F}

X p(t) (falen; #)p(wnlen)p(cn)

2D (Cnl fr, wn)
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Scoped Learning Extractor: Precision = 58%, Recall = 75% DError =-22%
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(3) Automatically Inducing an Ontology
[Riloff, 95]
Two inputs:

(1 )

prec/assified texts Heuristic “interesting” meta-patterns.

Linguistic Pattern Example

1. <subject> active-verb Zperpetrator> bombed

2. <subject> active-verb direct-object’ <perpetrator> claimed responsibility
3. <subject> passive-verb <victim> was murdered

1. <subject> verb infinitive <perpetrator> attempted to kill

5. <subject> auxiliary noun <victim> was victim

erb <direct-object> bombed <target>

verb <dircet-object>* Killed <victim>

e <direct-object> to kil <victim>
9. verb infinitive <direct-object> threatened to attack <target>
10. gerund <direct-object> Killing <victim>
11, noun auxliary <direct-object> fatality was <victim>

12. noun preposition <noun-phrase>
13. active-verb preposition <noun-phrase> d with <instrument>
14, passive-verb preposition <noun-phrase> | vas aimed at <target>
15. infinitive preposition <noun-phrase>’ | to fire at <victim>

bomb against. <target>

(3) Automatically Inducing an Ontology

[Riloff, “95]
preclassfied tess Stage 1
¥ !
1

Concept Nodes:

Sentence . S: World Trade Center - Ay10Slog
nal |~V wasbombed = o ) oo s boubed
PP: by terrorists borbed by <y
preclassified texts Stage 2

i

¥
N N S ConceptNode ___REL%

Sentence T T Subject/Verb/Object

Concept Node An bombed by <y>  84% ] patterns that occur
Dictionary: <w>was killed. 63% more often in the
< was killed <D saw 9% relevant documents
<x> was bombed than the irrelevant

bombed by <y> ones.

<> saw

Broader View
Now touch on some other issues

@ create ontology
Spider
D Filter by relevance
IE

D Tokenize|
D Segment

Classify
@ Associate

Cluster
Load DB
C(@ Train extraction models Query,
Search
Label training data ® Dpata mine
1

(4) Training IE Models using Unlabeled Data

[Collins & Singer, 1999]

‘ ...says Mr. Cooper, a vice president of ... ‘

NNP NNP  appositive phrase, head=president

Use two independent sets of fi
Contents: full-string=Mr._Cooper, contains(Mr.), contains(Cooper)
Context: ype=appositive, appositive-head=presid

1. Start with just seven rules: and ~1M sentences of NYTimes

full-string=New_York
fill-string=California
full-string=U.S.
contains(Mr.)
contains(Incorporated)
full-string=Microsoft
full-string=1.B.M.

=> Location

=> Location

=> Location

= Person

=> Organization
=> Organization
=> Organization

2. Alternately train & label
using each feature set.

3. Obtain 83% accuracy at finding
person, location, organization
& other in appositives and
prepositional phrases!

See also [Brin 1998], [Riloff & Jones 1999]
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(5) Data Mining: Working with IE Data

» Some special properties of IE data:
— ltis based on extracted text

— ltis “dirty”, (missing extraneous facts, improperly
normalized entity names, etc.
— May need cleaning before use

* What operations can be done on dirty, unnormalized
databases?
— Query it directly with a language that has “soft joins” across
similar, but not identical keys. [Cohen 1998]
— Construct features for learners [Cohen 2000]

— Infer a “best” underlying clean database
[Cohen, Kautz, MacAllester, KDD2000]

(5) Data Mining: Mutually supportive

IE and Data Mining

Extract a large database

[Nahm & Mooney, 2000]

Learn rules to predict the value of each field from the other fields.
Use these rules to increase the accuracy of IE.

Example DB record

Filled Job Template
title: Senior DBMS Consultant
salary: Up to $55K

language: Powerbuilder, Progress, C, C++, Visual Basic
platform: UNIX, NT

application: SQL Server, Oracle

area: Electronic Commerce, Customer Service

required years of experience: 3

desired years of experience: 5

required degree: BS

Sample Learned Rules

platform:AIX & lapplication:Sybase &
application:DB2
3 application:Lotus Notes

language:C++ & language:C &
application:Corba &
title=SoftwareEngineer

3 platform:Windows

TML & i T &
application:ActiveServerPages
3 area:Database

Language:Java & area:ActiveX &
area:Graphics
> area:Web




