Today’s Main Points

• Why is NLP interesting and difficult, complex and ambiguous.
 – Why? How to humans resolve this ambiguity?

• The six “layers” of NLP.

• NLP history, an overview, current successes.

• Course mechanics; what you can expect

HAL’s Capabilities

• Display graphics
• Play chess
• Natural language production and understanding

• Vision
• Planning
• Learning
• …
Natural Language Understanding

David Bowman: Open the pod bay doors, Hal.
HAL: I'm sorry, Dave, I'm afraid I can't do that.
David Bowman: What are you talking about, Hal?
HAL: I know that you and Frank were planning to disconnect me, and I'm afraid that's something I cannot allow to happen.

Many useful tools, but none that come even close to HAL's ability to communicate in natural language.

1950
Alan Turing 1912 - 1954

Turing Test
"Computing Machinery and Intelligence"

I propose to consider the question "Can machines think?"
We can only see a short distance ahead, but we can see plenty there that needs to be done.

Layers of Natural Language Processing

1. Phonetics & Phonology
2. Morphology
3. Syntax
4. Semantics
5. Pragmatics
6. Discourse

"It is easy to recognize speech."
"It is easy to wreck a nice beach."

1. Phonetics & Phonology
The study of: language sounds, how they are physically formed;
systems of discrete sounds, e.g. languages' syllabic structure.

"dis-k&-'nekt"
"disconnect"
2. Morphology
The study of the sub-word units of meaning.

disconnect

“not” “to attach”

Even more necessary in some other languages, e.g. Turkish:

uygar lastıramadıklarımızdan sizin zini zanda

(behaving) as if you are among those whom we could not civilize

3. Syntax
The study of the structural relationships between words.

I know that you and Frank were planning to disconnect me.

4. Semantics
The study of the literal meaning.

I know that you and Frank were planning to disconnect me.

ACTION = disconnect
ACTOR = you and Frank
OBJECT = me

5. Pragmatics
The study of how language is used to accomplish goals.

What should you conclude from the fact I said something?
How should you react?

I’m sorry Dave, I’m afraid I can’t do that.

Includes notions of polite and indirect styles.

6. Discourse
The study of linguistic units larger than a single utterance.

The structure of conversations:
turn taking, thread of meaning.

David Bowman:
Open the pod bay doors, Hal.

HAL:
I’m sorry, Dave, I’m afraid I can’t do that.

David Bowman:
What are you talking about, Hal?

HAL:
I know that you and Frank were planning to disconnect me, and I’m afraid that’s something I cannot allow to happen.

Linguistic Rules
E.g. Morphology

To make a word plural, add “s”

- dog → dogs
- baby → babies
- dish → dishes
- goose → geese
- child → children
- fish → fish (!)
Inherent Ambiguity in Syntax

Fed raises interest rates 0.5% in effort to control inflation

NY Times headline 17 May 2000

Where are the ambiguities?

- **Part-of-speech ambiguities**
- **Syntactic attachment ambiguities**
- **Word sense ambiguities**

Fed raises interest rates 0.5% in effort to control inflation

Word sense ambiguities:
- Fed → "federal agent"
 - interest → a feeling of wanting to know or learn more

Semantic interpretation ambiguities above the word level.

Effects of V/N Ambiguity (1)

Fed raises interest rates

Effects of V/N Ambiguity (2)

Fed raises interest rates

Effects of V/N Ambiguity (3)

Fed raises interest rates 0.5% in effort to control inflation

Ambiguous Headlines

- Iraqi Head Seeks Arms
- Juvenile Court to Try Shooting Defendant
- Teacher Strikes Idle Kids
- Stolen Painting Found by Tree
- Kids Make Nutritious Snacks
- British Left Waffles on Falkland Islands
- Red Tape Holds Up New Bridges
- Clinton Wins on Budget, but More Lies Ahead
- Ban on Nude Dancing on Governor’s Desk
What is grammatical and what isn’t?

- John I believe Sally said Bill believed Sue saw.
- What did Sally whisper that she had secretly read?
- John wants very much for himself to win.
- Who did Jo think said John saw him?
- The boys read Mary’s stories about each other.
- Mary, while John had had had had had had had had was the correct answer.

What is grammatical and what isn’t?

- John I believe Sally said Bill believed Sue saw.
- What did Sally whisper that she had secretly read?
- John wants very much for himself to win.
- Who did Jo think said John saw him?
- The boys read Mary’s stories about each other.
- Mary, while John had had had had had “had had;” “had had” was the correct answer.

Language Evolves

- Morphology
 - We learn new words all the time: bioterrorism, cyberstalker, infotainment, thumb candy, energy bar
- Part-of-speech
 - Historically: “kind” and “sort” were always nouns: “I knowe that sorte of men ryght well.” [1560]
 - Now also used as degree modifiers: “I’m sort of hungry.” [Present]
 - “It sort o’ stirs one up to hear about old times.” [1833]

Natural Language Computing is hard because

- Natural language is:
 - highly ambiguous at all levels
 - complex and subtle
 - fuzzy, probabilistic
 - involves reasoning about the world
 - embedded a social system of people interacting
 - persuading, insulting and amusing them
 - changing over time

Probabilistic Models of Language

To handle this ambiguity and to integrate evidence from multiple levels we turn to:

- Bayesian Classifiers (not rules)
- Hidden Markov Models (not DFAs)
- Probabilistic Context Free Grammars
- Maximum Entropy models
- …other tools of Machine Learning, AI, Statistics

Natural Language Processing

- Natural Language Processing (NLP) is the study of the computational treatment of natural languages:
 - Most commonly Natural Language Understanding
 - The complementary task is Natural Language Generation
- NLP draws on research in Linguistics, Theoretical Computer Science, Artificial Intelligence, Mathematics and Statistics, Psychology, etc.
What & Where is NLP

- Goals can be very far-reaching
 - True text understanding
 - Reasoning and decision-making from text
 - Real-time spoken dialog
- Or very down-to-earth
 - Searching the Web
 - Context-sensitive spelling correction
 - Analyzing reading-level or authorship statistically
 - Extracting company names and locations from news articles.
- These days, the later predominate (as NLP becomes increasingly practical, focused on performing measurably useful tasks now.
- Although language is complex, and ambiguity is pervasive, NLP can also be surprisingly easy sometimes:
 - Rough text features often do half the job

Some brief history: 1950s

- Early NLP on machines less powerful than pocket calculators.
- Foundational work on automata, formal languages, probabilities and information theory.
- First speech systems (Davis et al, Bell Labs).
- MT heavily funded by military, but basically just word substitution programs.
- Little understanding of natural language syntax, semantics, pragmatics.

Some brief history: 1960s

- Alvey report (1966) ends funding for MT in America - the lack of real results realized
- ELIZA (MIT): Fraudulent NLP in a simple pattern matcher psychotherapist
 - It's true, I am unhappy.
 - Do you think coming here will make you not to be unhappy?
 - I need some help; that much is certain.
 - What would it mean to you if you got some help?
 - Perhaps I could earn to get along with my mother.
 - Tell me more about your family.
- Early corpora: Brown Corpus (Kudera and Francis)

Some brief history: 1970s

- Could interpret questions, statements commands.
 - Which cube is sitting on the table?
 - The large green one which supports the red pyramid.
 - Is there a large block behind the pyramid?
 - Yes, three of them. A large red one, a large green cube, and the blue one.
 - Put a small one onto the green cube with supports a pyramid.
 - OK.

Some brief history: 1980s

- Procedural --> Declarative (including logic programming)
- Separation of processing (parser) from description of linguistic knowledge.
- Representations of meaning: procedural semantics (SHRDLU), semantic nets (Schank), logic (perceived as answer; finally applicable to real languages (Montague)
- Perceived need for KR (Lenat and Cyc)
- Working MT in limited domains (METEO)

Some brief history: 1990s

- Resurgence of finite-state methods for NLP: in practice they are incredibly effective.
- Speech recognition becomes widely usable.
- Large amounts of digital text become widely available and reorient the field. The Web.
- Resurgence of probabilistic/statistical methods, led by a few centers, especially IBM (speech, parsing, Candide MT system), often replacing logic for reasoning.
- Recognition of ambiguity as key problem.
- Emphasis on machine learning methods.
Some brief history: 2000s

- A bit early to tell! But maybe:
 - Emphasis on meaning and knowledge representation.
 - Emphasis on discourse and dialog.
 - Strong integration of techniques, and levels: bringing together statistical NLP and sophisticated linguistic representations.
 - Increased emphasis on unsupervised learning.
 - More integration of NLP components into larger systems.

Example Applications of NLP:
MEditSpellCorrection, grammar checking

Example Applications of NLP:
News categorization and summarization

Example Applications of NLP:
Information Extraction: Find experts, employees

Example Applications of NLP:
Information Extraction: Job Openings
Example Applications of NLP:
Information Extraction: Job Openings

Example Applications of NLP:
Automatically Solving Crossword Puzzles

Example Applications of NLP:
Question Answering

Example Applications of NLP:
Machine Translation

Example Applications of NLP:
Automatically generate Harlequin Romance novels?

Goals of the Course

• Introduce you to NLP problems and solutions.
• Relation to linguistics & statistics.
• Give you some hands-on practice with data and a handful of methods.

• At the end you should
 – Agree that language is subtle and interesting.
 – Feel some ownership over the formal & statistical models.
 – Be able to build some useful NLP system of your choosing.

Example Applications of NLP:

Example Applications of NLP:

Goals of the Course
This Class

- Assumes you come with some skills…
 - Some basic statistics, decent programming skills (in a language of your choice—although solutions will be in Java)
 - Some ability to learn missing knowledge
- Teaches key theory and methods for language modeling, tagging, parsing, etc.
- But it’s something like an “AI Systems” class:
 - Hands on with data
 - Often practical issues dominate over theoretical niceties

Course Logistics

- Professor: Andrew McCallum
- TA: Aron Culotta
 - Gary Huang
- Time: Tue/Thu 2:30-3:45pm
- Mailing list: cs585@cs.umass.edu
- More information on Web site:
 - http://www.cs.umass.edu/~mccallum/courses/inlp2004

Grading

- 5 short written homeworks
 - should take less than 30 minutes each
 - some hands-on experience
 - help you set expectations for the mid-term and final
- 3 programming assignments
 - no way to really internalize without doing it
 - should be fun!
- Final project: with a partner
 - chance to explore a special interest at end of term
- Midterm & Final, and classroom participation

Syllabus Outline

- Grammars and parsing
- Foundations (probability & info theory)
- Language models, Spam filtering.
- Collocations, word clustering, disambiguation.
- Finite state machines, Markov models, Part-of-speech tagging.
- Modern parsing techniques.
- Information extraction, Semantics, Question answering, Dialog systems.

Recommended Reading

- Manning & Schutze
 - Chapter 11, section 1
 - Context Free Grammars, topic of next class
- Manning & Schutze
 - Chapter 3, for background on linguistics.

Thank you!