Graphical Models

Lecture 14.:
Message Passing in Loopy Graphs

Andrew McCallum
mccallum@cs.umass.edu

Thanks to Noah Smith and Carlos Guestrin for some slide materials.



Admin

* Repeat announcement: class mailing list
691gm-all@cs

— Not yet subscribed? Send me request.
* HW#3 now due Friday April 1.



Sum-Product Message Passing

« Each clique tree vertex C. passes messages to each of its
neighbors once it’s ready to do so.
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— This is asynchronous; might want to be careful about scheduling.

— One option: two passes (upstream to some root, then
downstream).

« Attheend, forall C:
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— This is the unnormalized marginal for C..
Lecture 11



Calibrated Clique Tree as a
Graphical Model

* Original (unnormalized) factor model and
calibrated clique tree represent the same
(unnormalized) measure:
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Belief Update Message Passing
(Also Known as Sum-Product-Divide)

* Maintain beliefs at each vertex (B) and edge (u).

o Initialize each B, to v..

» Initialize each ;; to 1.

e Pass belief update messages.
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Message Passing

e Result is the same for both versions:
calibrated clique tree.



Cliqgue Trees, Generalized

* Clique trees for exact inference:
— groups of random variables on nodes
— edges form a tree

— running intersection property
(implies sepsets are intersections, in trees)

* Cluster graph: generalization!
— graph can have loops — not necessarily a tree

— (but we will still want a variant of the
running intersection property... coming soon)
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Effects

 Fewer random variables per node.

— |f we were to pass messages, they would be faster to
compute.

 Sum-product and sum-product-divide did not
hinge on having a tree.
— We can still run these algorithms.
— Two-pass convergence guarantee is gone.

— Indeed, it is not clear that we have any convergence
guarantee.

— Node beliefs at the end may not equate to marginals.



Loopy Graph Message Passing

* Will it converge?
* If so, to what?



Running Intersection Property “variant”
in Cluster Graphs

* Given any variable X and any two nodes it is a
member of, C. and C, there is a single path

between C; and C; such that X is on every edge.

— There might be other paths that connect the nodes.

— Unlike in clique trees, this does not imply that
5;= ¢NC,.

— Instead, S;; £ C, N C,



“B” removed to
make “B-labeled”
edges form a tree.



Example

BC

~

To form a “clique tree” remove entire edges to make a tree.
To form a “cluster graph obeying running intersection variant”
remove variables from messages on edges, such that there
are no cycles in subgraphs containing only edges labeled with
that variable.



Calibration in Cluster Graphs

* Adjacent nodes’ beliefs show agreement on
the sepset (not the full intersection).

* For graphs with the running intersection

property, a variable X's marginal is identical in
all nodes that contain X.



Cluster Graph Belief Propagation

* Both sum-product and sum-product-divide
variants.

e Sum-product: how to start if no node has all
incoming information yet?

— Start with all messages = 1.

* Keep sending messages until calibration.



Claims

* At convergence, we will have a calibrated
cluster graph.
dBo= ) B
Ci\Si,j Ci\Si,;
13,5 (Si,5)

* |nvariant: throughout the algorithm:
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Cluster Graph Invariant

* Exactly like before.

* No information about the original distribution
is lost.

* We are simply transforming the original factors
into a “more useful” form.



Cluster Graph Trade-Offs

* |ntuitively, fewer clusters and bigger sepsets
lead to better preservation of information.

* But breaking the graph into smaller parts leads
to lower cost.



Bethe Cluster Graphs
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Example

A cluster graph, but not Bethe






Pairwise Markov Network
Cluster Graphs
* Technically speaking, this is
loopy belief propagation.

— I’ve been using the term more broadly.



(Primer in NLP)

modifier
argument

loopy belief propagation

 The propagation is loopy, and it is beliefs that are
propagated.

* The beliefs are not loopy!



Factor Graph Cluster Graphs

* Let each factor have a node, and each random
variable have a node.

— Called a Bethe cluster graph.



Example

{A, B, C}{B, C, D}{B, D, F} {B, E}, {D, E}



Factor Graph Cluster Graphs

* Information about variable interactions is lost
during propagation.
— Correct by merging some pairs?

— May then have to adjust the sepsets to ensure the
running intersection property...



Bad News

Cluster graph belief propagation does not
necessarily converge.

— Oscillation!

— Techniques like “dampening” the messages can
help with convergence, maybe worse beliefs.

— This problem tends to be worse for “peakier” or
more deterministic models.

— Lots of little loops are bad; a single loop is okay.

— Many variations on the algorithm (see book).



Variational Analysis

* Recall the problem of maximizing the energy
functional:
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such that Vz, Q(x)= H Qi(x;)

* (Mean field: approximation by choosing an
“easy” class 9.)



Factored Energy Functional
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* For trees, they can be shown to be equivalent.
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e Form of Q:
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Factored Energy Functional

* For cluster graphs, this is an approximation.
— It is not a bound.

— This is the first way that cluster graph belief
propagation falls short.

e Second problem: constraints on the beliefs.

— Not every setting of the beliefs corresponds to a
coherent distribution over X.



Marginal Polytope

* |t’s possible to have a calibrated cluster graph
whose beliefs are not globally consistent.

“achievable”
marginals

distributions P

beliefs



Marginal Polytope

* The set of achievable marginals actually forms
a polytope, called the marginal polytope.

e Bad news:

— The polytope doesn’t generally have a compact
representation.

— It is NP hard in general to determine whether a set
of beliefs is in that polytope.

— Optimizing over the polytope is as hard as
inference.

polygon = polytope in 2 dimensions



Approximating the Marginal Polytope

* Local consistency constraints:
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 This can be understood as a relaxation of the
marginal polytope.

e Points correspond to pseudo marginals.



Local Consistency Polytope

marginal
polytope

distributions P




Equivalence

* A convergence point of cluster graph belief
propagation equates to a stationary point of
the factored energy functional over the local
consistency polytope.

* Two approximations:

— factored energy functional

— local consistency polytope (not marginal polytope)

 Compare with mean field ...



Caveats

Not a bound on log Z.

Might not be a local max:
— boundary of the polytope
— saddle point or local minimum

Cluster graph belief propagation steps may not
improve the objective.
— Oscillation!

The declarative view may be helpful for
understanding better methods. See text.



Final Warnings

* Cluster graph belief propagation methods are a
general purpose way to do inference in “hard”
graphical models.

* May not converge.

 When it does converge, there may be different
convergence points.



