Graphical Models

Lecture 12:

Belief Update Message Passing

Andrew McCallum mccallum@cs.umass.edu

Today's Plan

- Quick Review: Sum Product Message Passing (also known as "Shafer-Shenoy")
- Today: Sum Product **Divide** Message Passing (also known as "belief update" message passing "Lauritzen-Spiegelhalter" and "belief propagation")
- Mathematically equivalent, but different intuitions.
- Moving toward approximate inference.

Quick Review

• {H, R, S, A, F}

 φ_{F}

Flu

 ϕ_{A}

All.

Η.

Message Passing (One Root)

- Input: clique tree T, factors Φ , root \mathbf{C}_{r}
- For each clique C_i, calculate v_i
- While C_r is still waiting on incoming messages:
 - Choose a \mathbf{C}_i that has received all of its incoming messages. $\delta_{k \to j} = \mathbf{C}_i \setminus \mathbf{S}_{i,j} = \mathbf{C}_i \setminus \mathbf{S}_i = \mathbf{C}_i \setminus \mathbf$
 - Calculate and send the message from $\mathbf{C}_{\mathbf{i}}$ to $\mathbf{C}_{\mathbf{upstream-neighbor}(\mathbf{i})}\beta_r = \nu_r \prod_{k \in \mathrm{Neighbors}_r} \delta_{k \to r}$ $= \sum_{\mathbf{X} \setminus \mathbf{C}_i} \prod_{\phi \in \Phi} \phi$ $= Z \cdot P(\mathbf{C}_r)$

Different Roots; Same Messages

Sum-Product Message Passing

- Each clique tree vertex C_i passes messages to each of its neighbors once it's ready to do so.
- At the end, for all **C**_i:

$$\beta_i = \nu_i \prod_{k \in \text{Neighbors}_i} \delta_{k \to i}$$

- This is the unnormalized marginal for C_i .

Calibrated Clique Tree

• Two adjacent cliques C_i and C_j are calibrated when: $\nabla_{\beta_i} - \nabla_{\beta_i}$

$$\sum_{\boldsymbol{C}_i \setminus \boldsymbol{S}_{i,j}} \beta_i = \sum_{\boldsymbol{C}_j \setminus \boldsymbol{S}_{i,j}} \beta_j$$
 $= \mu_{i,j}(\boldsymbol{S}_{i,j})$

Calibrated Clique Tree as a

 Original (unnormalized) factor model and calibrated clique tree represent the same (unnormalized) measure:

Inventory of Factors

- original factors φ
- initial potentials v
- messages δ
- intermediate factors ψ (no longer explicit)
- clique beliefs β
- sepset beliefs μ

Inventory of Factors

- original factors φ
- initial potentials v
- messages δ
- intermediate factors ψ (no longer explicit)
- clique beliefs β
- sepset beliefs μ

New algorithm collapses everything into **beliefs!**

Another Operation: Factor Division

- 0 / 0 is defined to be 0
- a / 0 is undefined when a > 0

Α	В	С	$\varphi_1(A, B, C)$
0	0	0	7000
0	0	1	30
0	1	0	5
0	1	1	500
1	0	0	100
1	0	1	1
1	1	0	10
1	1	1	1000

В	С	$\phi_2(B, C)$
0	0	100
0	1	1
1	0	2
1	1	100

Α	В	С	ф ₃ (A, B, C)	
0	0	0	70	
0	0	1	30	
0	1	0	2.5	
0	1	1	5	
1	0	0	1	
1	0	1	1	
1	1	0	5	
1	1	1	10	

Messages

- When computing the message $\delta_{i \to j}$ from i to j, we multiply together all incoming messages to i *except* the one from j to i, $\delta_{j \to i}$.
- Alternative: multiply all messages, and divide out the one from j to i. $\beta_i \ = \ \nu_i \ \prod \ \delta_{k \to i}$

$$\delta_{i o j} = \sum_{\substack{m{C}_i \setminus m{S}_{i,j} \ \delta_{i} \\ \delta_{j o i}}}
u_i \prod_{\substack{k \in ext{Neighbors}_i \setminus \{j\}}} \delta_{k o i}$$

$$\delta_{i o j} = \frac{\sum_{\substack{m{C}_i \setminus m{S}_{i,j} \ \delta_i \\ \delta_{j o i}}} \beta_i}{\delta_{j o i}}$$

Key Idea

- We can "forget" the initial potentials v.
- We do not need to calculate the messages δ explicitly.

• Store a partially calculated β on each vertex and a partially calculated μ on each edge; update whenever new information comes in.

A Single Belief Update

At any point in the algorithm:

$$\begin{array}{cccc}
\sigma_{i \to j} & \leftarrow & \sum_{C_i \setminus S_{i,j}} \beta_i \\
\beta_j & \leftarrow & \beta_j \times \frac{\sigma_{i \to j}}{\mu_{i,j}} \\
\mu_{i,j} & \leftarrow & \sigma_{i \to j}
\end{array}$$

Belief Update Message Passing

- Maintain beliefs at each vertex (β) and edge (μ).
- Initialize each β_i to v_i .
- Initialize each $\mu_{i,i}$ to **1**.
- Pass belief update messages.

$$\begin{array}{ccc}
\sigma_{i \to j} & \leftarrow & \sum_{\boldsymbol{C}_i \setminus \boldsymbol{S}_{i,j}} \beta_i \\
\beta_j & \leftarrow & \beta_j \times \frac{\sigma_{i \to j}}{\mu_{i,j}} \\
\mu_{i,j} & \leftarrow & \sigma_{i \to j}
\end{array}$$

Three Clique Example

$$\begin{array}{ccc}
\sigma_{i \to j} & \leftarrow & \sum_{C_i \setminus S_{i,j}} \beta_i \\
\beta_j & \leftarrow & \beta_j \times \frac{\sigma_{i \to j}}{\mu_{i,j}} \\
\mu_{i,j} & \leftarrow & \sigma_{i \to j}
\end{array}$$

Worries

Does the order of the messages matter?

What if we pass the same message twice?

What if we pass a message based on partial information?

Claims

 At convergence, we will have a calibrated clique tree.

$$\sum_{C_i \setminus S_{i,j}} \beta_i = \sum_{C_j \setminus S_{i,j}} \beta_j \\
= \mu_{i,j}(S_{i,j})$$

• Invariant: throughout the algorithm:

$$\prod_{\phi \in \Phi} \phi = \prod_{\mathbf{C} \in \text{Vertices}(\mathcal{T})} \nu_{\mathbf{C}} = \frac{\prod_{\mathbf{C} \in \text{Vertices}(\mathcal{T})} \beta_{\mathbf{C}}}{\prod_{\mathbf{S} \in \text{Edges}(\mathcal{T})} \mu_{\mathbf{S}}}$$

Equivalence

- Sum product message passing and sum product divide message passing lead to the same result: a calibrated clique tree.
 - SumProduct lets you calculate beliefs at the very end.
 - BeliefUpdate has beliefs from the start, and keeps them around the whole time.

Complexity

- Linear in number of cliques, total size of all factors.
- Can accomplish convergence in the same upward/downward passes we used for the earlier version.

Dealing with Evidence

Advantage: Incremental Updates

- Naively, if we have evidence, we can alter the initial potentials at the start, then calibrate using message passing.
- Better: think of evidence as a newly arrived factor into some clique tree node(s).

Example

$$\sigma_{i \to j} \leftarrow \sum_{\mathbf{C}_i \setminus \mathbf{S}_{i,j}} \beta_i
\beta_j \leftarrow \beta_j \times \frac{\sigma_{i \to j}}{\mu_{i,j}}
\mu_{i,j} \leftarrow \sigma_{i \to j}$$

Advantage: Incremental Updates

- Naively, if we have evidence, we can alter the initial potentials at the start, then calibrate using message passing.
- Better: think of evidence as a newly arrived factor into some clique tree node i.
- Recalibrate: pass messages out from node i.
 Single pass!
- Retraction: can't recover anything multiplied by zero.

Queries across cliques

Advantage: Queries across Cliques

- Naively: enforce that all query variables are in some clique.
 - Every query might need its own clique tree!
- Better: variable elimination in a calibrated clique tree.
 - Bonus: only have to use a subtree that includes all query variables.

Multi-Clique Queries

- Find a subtree of T that includes all query variables Q. Call it T' and its scope S.
- Pick a root node r in T'.
- Run variable elimination of S \ Q with factors (for all I in T'):

$$\phi_i = \frac{\beta_i}{\mu_{i, \text{upstream}(i)}}$$

Example: Z-P(B, D)

Advantage: Multiple Queries

- Suppose we want the marginal for every pair of variables X, Y.
- Naïve: construct a clique tree so all nodes pair together. (Very bad.)
- Naïve: run VE n-choose-2 times.
- Better: dynamic programming.

Dynamic Programming for All Pairs

- Construct a table so that $A_{i,j}$ contains $U(\mathbf{C}_i, \mathbf{C}_i) = Z \cdot P(\mathbf{C}_i, \mathbf{C}_i)$.
- Base case: C_i and C_i are neighboring cliques.

$$egin{array}{lll} A_{i,j} &=& U(oldsymbol{C}_i, oldsymbol{C}_j) \ &=& U(oldsymbol{C}_j \mid oldsymbol{C}_i) U(oldsymbol{C}_i) \ &=& rac{eta_j}{\mu_{i,j}} eta_i \end{array}$$

 Proceed to farther more distant pairs recursively.

Dynamic Programming for All Pairs

- C_i and C_j are independent given C_j.
- We already have $U(C_i, C_i)$ and $U(C_i, C_i)$.

$$A_{i,j} = U(\boldsymbol{C}_i, \boldsymbol{C}_j)$$

$$= \sum_{\boldsymbol{C}_l \setminus \boldsymbol{C}_j} U(\boldsymbol{C}_i, \boldsymbol{C}_l) U(\boldsymbol{C}_j \mid \boldsymbol{C}_l)$$

$$= \sum_{\boldsymbol{C}_l \setminus \boldsymbol{C}_j} A_{i,l} \frac{\beta_j}{\mu_{j,l}}$$

Pros and Cons: Message Passing in Clique Trees

- Multiple queries
- Incremental updates
- Calibration operation has transparent complexity.

But:

- Complexity can be high (space!)
- Slower than VE for a single query
- Local factor structure is lost

Summary: Message Passing in Clique Trees

- How to construct a clique tree (from VE elimination order or triangulated chordal graph)
- Marginal queries for all variables solved in only twice the time of one query!
- Belief update version: clique potentials are reparameterized so that the clique tree invariant always holds.
- Runtime is linear in number of cliques, exponential in size of the largest clique (# variables; induced width).