Graphical Models

Lecture 12:
Belief Update Message Passing

Andrew McCallum
mccallum@cs.umass.edu

Thanks to Noah Smith and Carlos Guestrin for slide materials.

Today’s Plan

Quick Review: Sum Product Message Passing (also
known as “Shafer-Shenoy”)

Today: Sum Product Divide Message Passing (also
known as “belief update” message passing “Lauritzen-
Spiegelhalter” and “belief propagation”)

Mathematically equivalent, but different intuitions.

Moving toward approximate inference.

Quick Review

* {H,R, S, A F}

d) FAS

b /Gb\ bs;

\

Message Passing (One Root)

e Input: clique tree T, factors ®, root C

 For each clique C, calculate v,

« While C_is still waiting on incoming messages:

— Choose a C; that has receiyed all ofis incoming ;|
messages. C;\S;,; ke&Neighbors;,\{j}

— Calculate and send the

message from Ci to cupstream-neighbor(i)@r = Ur H Ok—r

keNeighbors,.
= 2 1l¢
)(\C;'z ped
~- 7-P(C,)

Different Roots; Same Messages

6

\ 6SAHSR
\ Osg-ssar

Bs

root

6HS%SAF

6SAF%HS

Sum-Product Message Passing

 Each clique tree vertex C. passes messages to
each of its neighbors once it’s ready to do so.

At the end, for all C:

Bi = v H Ok—i

k&Neighbors,

— This is the unnormalized marginal for C..

Calibrated Clique Tree

« Two adjacent cliques C, and C are calibrated

when: Z 8 = Z B;

Calibrated Cligue Tree as a

* Original (unnormalized) factor model and
calibrated clique tree represent the same
(unnormalized) measure:

1] sc

Hgb _ C cVertices(7)

PpeD H 1S

SeEdges(7)

Inventory of Factors

original factors ¢

initial potentials v

messages 6

intermediate factors Y (no longer explicit)
clique beliefs B

sepset beliefs u

Inventory of Factors

original factors ¢

initial potentials v

messages 6

intermediate factors Y (no longer explicit)
clique beliefs B

sepset beliefs New algorithm
collapses

everything into
beliefs!

Another Operation: Factor Division

e 0/0isdefinedtobeO
e a/0isundefined whena>0

A|B|C|d,A B,C) A|B|C|dyA, B,C)
olo|o olo|o
olof1 olo|1
of[1]0 i o[1]0
011 019 011
1|0]o0 / 0|1] 1/0]|0
1|01 110 1|01
1|10 ol 1|10
1|11 1|11

Messages

« When computing the message 691. from i to j, we multiply
together all incoming messages to i except the one fromjtoi,

5.,

* Alternative: multiply all messages, and divide out the one

fromjtoi.
Bi = v H Of—si

k&Neighbors,

0isj = E Vi H Ok—si
C;\Si, keNeighbors; \{j}
51'_)]' —

5j_>7;

Key ldea

 We can “forget” the initial potentials v.

 We do not need to calculate the messages 6
explicitly.

» Store a partially calculated B on each vertex
and a partially calculated u on each edge;
update whenever new information comes in.

A Single Belief Update

* At any pointin the algorithm:

Oj—j Z b

Ci\SrL’,j

O-. o
B, «— f[Bjx —=
i, j

Hij <= Oimy

Belief Update Message Passing

* Maintain beliefs at each vertex (B) and edge

().
o Initialize each B, to v..

» Initialize each ,;; to 1.

* Pass belief update messages.

Oi—j Z b

o
Bj — By x —

Hij < Oimy

Worries

* Does the order of the messages matter?

 What if we pass the same message twice?

 What if we pass a message based on partial
information?

Claims

* At convergence, we will have a calibrated
clique tree.
> B > B
Ci\Si,j Ci\Si,;
= i (Sij)

* |nvariant: throughout the algorithm:

Il &
CcVertices(7)
¢ = Ve =
</51;!:I> CGVe:!;[:eS(T) - H HS

ScEdges(7)

Equivalence

 Sum product message passing and
sum product divide message passing
lead to the same result: a calibrated clique
tree.

— SumProduct lets you calculate beliefs at the very
end.

— BeliefUpdate has beliefs from the start, and keeps
them around the whole time.

Complexity

* Linear in number of cliques, total size of all
factors.

e Can accomplish convergence in the same
upward/downward passes we used for the
earlier version.

Dealing with Evidence

Advantage: Incremental Updates

* Naively, if we have evidence, we can alter the
initial potentials at the start, then calibrate
using message passing.

e Better: think of evidence as a newly arrived
factor into some clique tree node(s).

Advantage: Incremental Updates

Naively, if we have evidence, we can alter the
initial potentials at the start, then calibrate
using message passing.

Better: think of evidence as a newly arrived
factor into some clique tree node i.

Recalibrate: pass messages out from node i.
Single pass!

Retraction: can’t recover anything multiplied
by zero.

Queries across cligues

Advantage: Queries across Cliques

* Naively: enforce that all query variables are in
some clique.

— Every query might need its own clique tree!

e Better: variable elimination in a calibrated
clique tree.

— Bonus: only have to use a subtree that includes all
guery variables.

Multi-Clique Queries

* Find a subtree of T that includes all query
variables Q. Call it T" and its scope S.

* PickarootnoderinT.

 Run variable elimination of S \ Q with factors
(for all I'in T’):

Bi

:ui,upstream(i)

b =

Example: Z-P(B, D)

'®
N

=1

B

Advantage: Multiple Queries

Suppose we want the marginal for every pair
of variables X, Y.

Naive: construct a clique tree so all nodes pair
together. (Very bad.)

Naive: run VE n-choose-2 times.

Better: dynamic programming.

Dynamic Programming for All Pairs

» Construct a table so that A;; contains
U(C, C,) = Z-P(C, C).

 Base case: C. and C are nelghbormg cliques.
A = U(Ci,C;)

= U(C; | C)U(CY)

= Dy,
i, g

* Proceed to farther more distant pairs’

recursively. u

Dynamic Programming for All Pairs

« C.and C are independent given C,.

» We already have U(C, C) and U(C, Cj).

Ay =

Pros and Cons:
Message Passing in Clique Trees

 Multiple queries
* Incremental updates

* Calibration operation has transparent
complexity.

But:

 Complexity can be high (space!)
* Slower than VE for a single query
* Local factor structure is lost

Summary:
Message Passing in Clique Trees

How to construct a clique tree (from VE
elimination order or triangulated chordal graph)

Marginal queries for all variables solved in only
twice the time of one query!

Belief update version: clique potentials are
reparameterized so that the clique tree invariant
always holds.

Runtime is linear in number of cliques, exponential
in size of the largest clique (# variables; induced
width).

